FAST AUTOMATED ANALYSIS OF STRONG GRAVITATIONAL LENSES WITH CONVOLUTIONAL NEURAL NETWORKS

Laurence Perreault Levasseur

Hezaveh, Perreault Levasseur, Marshall, *Nature* 548, 555–557 (Aug. 2017) Perreault Levasseur, Hezaveh, Wechsler, ApJL 850, L7-5 (Nov 2017)

and the second second second second second

STRONG GRAVITATIONAL LENSING

STRONG GRAVITATIONAL LENSING

SCIENCE MOTIVATIONS FOR STRONG LENSING

Background source

Use strong lensing as a **cosmic telescope**.

Foreground structure

Use lensing to probe the **distribution of matter** in the lensing galaxies.

Cosmology

Use time delays to measure ${\sf H}_0$

LENS MODELING: THE KEY TO ALL THESE SCIENCES

1- HOW DOES THE BACKGROUND SOURCE TRULY LOOK LIKE? WHAT IS THE UNDISTORTED IMAGE?

2- How is matter distributed in the Lensing Structure?

THE UGLY: OPTIMIZATION

- GIVEN THE DATA, WE NEED TO FIND THE PARAMETERS THAT OPTIMIZE A GOODNESS-OF-FIT FUNCTION, (TYPICALLY THE PARAMETER POSTERIOR).
- This is done using optimizers.
- THE PARAMETER SPACE IS FULL OF CRAZY-LOOKING LOCAL MINIMA: OPTIMIZERS GET STUCK REGULARLY.
- LIKELIHOOD EVALUATIONS ARE VERY EXPENSIVE.
- This makes the process both slow, and in need of constant baby sitting (not automated).

SAD STORY OF A POOR OPTIMIZER

data

model

data - model

1

true data parameters

model parameters

Looking into the future: New Lenses

For future surveys we find that, assuming Poisson limited lens galaxy subtraction, searches of the DES, LSST, and Euclid data sets should discover 2400, 120000, and 170000 galaxy–galaxy strong lenses, respectively

Collett, ApJ. 2015

Looking into the future: Methods?

How are we going to analyze 170,000 lenses?

Lens modeling is very slow.

- Even a simple lens model can take 2-3 days of human and CPU time, translating to **1,400 years !!!**
- Even if we pay 100 people to work on this, it'll be 14 years!!! Old method are simply not feasible.

Lens modeling sweatshop of 2022

A BAD LOCAL MINIMUM IS EASILY RECOGNIZABLE TO HUMAN EYE

data

model

data - model

true data parameters

model parameters

690

COMPUTER VISION: CONVOLUTIONAL NEURAL NETWORKS

COMMONLY USED FOR IMAGE RECOGNITION AND CLASSIFICATION

Convolutional Neural Networks: Previously used to find lenses (Classification)

THEY CAN BE TRAINED TO CLASSIFY IMAGES: TWO CLASSES: LENSES VS. NON-LENSES

CMU DeepLens: Deep Learning For Automatic Image-based Galaxy-Galaxy Strong Lens Finding

François Lanusse,¹ Quanbin Ma,² Nan Li,^{3,4} Thomas E. Collett,⁵ Chun-Liang Li,²

Siamak Ravanbakhsh,² Rachel Mandelbaum¹ and Barnabás Póczos²

¹McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA ²School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

³ High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA

⁴Department of Astronomy & Astrophysics, The University of Chicage, 5640 South Ellis Avenue, Chicage, IL 60637, USA ⁵Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Rd, Portsmouth, POI 3FX, UK

Finding Strong Gravitational Lenses in the Kilo Degree Survey with Convolutional Neural Networks

C. E. Petrillo^{1*}, C. Tortora¹, S. Chatterjee¹, G. Vernardos¹, L. V. E. Koopmans¹, G. Verdoes Kleijn¹, N. R. Napolitano², G. Covone³, P. Schneider⁴, A. Grado², J. McFarland¹

¹Kaptegn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV, Groningen, The Netherlands ²INAF - Onservatorio Astronomico di Capodimonte, Salita Moioriollo, 16, 80131 Napoli, Italy ³Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Compl. Univ. Monte S. Angelo, 80126 Napoli, Italy ⁴Argelandor-Institut für Astronomie, Auf dem Higol 71, D-53121 Bonn, Germany

Fast automated analysis of strong gravitational lenses with convolutional neural networks Hezaveh, Perreault Levasseur, Marshall Nature 548, 555–557, Aug 2017

TRAINING DATA

We need a large number of training images. There are only a couple of hundred of gravitational lenses known to date. But we can simulate these images very fast.

The training images need to be as realistic as possible, encompassing all optical effect and noise properties of real telescope images. These include:

REALISTIC IMAGES OF GALAXIES

Optical Blurring (telescope Point Spread Function)
Addition of Poisson shot noise (discrete photon noise)
Detector noise
Cosmic rays, hot pixels, and other artifacts
Zero bias

PRODUCING THE TRAINING DATA

Apply random masks

ADD COSMIC RAYS

ADD NOISE

EXAMPLES OF SIMULATED DATA

1	2	3	4 - 1	5
K.	()	2012		1
				•
6	7	8	9	10
	1. 1		•	and the
	/			
11	12 .	13	14	15
0	1.		:	
				~
16	17	18	19	20
0	1	14	0	1
	-			
21	22	23	24	25
	. * · .	()	(
		~	~	
and the second second in the second second		and the second se	and the second se	the second s

GENERAL INFORMATION ABOUT THE NETWORKS

- Predict the parameters of SIE and shear (5-8 parameters)
- Half a million (simulated) images for training.
- Trained multiple networks: e.g., Inception.v4 (hundreds of layers)
- Training time: About 1-2 day(s) on a single GPU

Inception.v4 (designed by Google)

Fully connected

RECOVERED PARAMETERS FOR SIMULATED TEST DATA

x-axis: true values *y*-axis: estimated values

RECOVERED PARAMETERS FOR SIMULATED TEST DATA

10 MILLION TIMES FASTER THAN ML LENS MODELING: 0.01 SECONDS ON A SINGLE GPU

WHAT WOULD TAKE **100 PEOPLE 14 YEARS** AND **12 MILLION CPU HOURS** CAN BE DONE IN HALF AN HOUR ON A SINGLE GPU

WHAT ABOUT THE LIGHT OF THE LENSING GALAXY?

SDSS J0959+0410	SDSS J1032+5322	SDSS J1443+0304	SDSS J1218+0830
SDSS J0912+0029	SDSS J1204+0358	SDSS J1153+4612	SDSS J2341+0000
SDSS J1627-0053	SDSS J1205+4910	SDSS J1142+1001	SDSS J0946+1006
SDSS J0956+5100	SDSS J0822+2652	SDSS J1621+3931	SDSS J1630+4520

WHAT ABOUT THE LIGHT OF THE LENSING GALAXY?

USUALLY PEOPLE FIT A MODEL (E.G., SERSIC) TO THE LIGHT DISTRIBUTION OF THE LENS GALAXY AND REMOVE IT FROM THE DATA. THIS IS:

1) TIME CONSUMING, REQUIRING ANOTHER NON-LINEAR OPTIMIZATION PROBLEM 2) NOT AUTOMATED, REQUIRING GUESSES FOR STARTING POINTS, A CHOICE OF AN APPROPRIATE PROFILE, ETC.

3) OFTEN LEAVES HIGH RESIDUALS (GALAXIES AREN'T EXACTLY SERSIC, OR KING, ETC.)4) THEY DON'T TAKE ADVANTAGE OF COLOR DIFFERENCE IN THE TWO SOURCES.

USE ANOTHER MACHINE LEARNING TOOL: INDEPENDENT COMPONENT ANALYSIS (ICA)

SL25J021902-082904 HST-F475X	HST-FEOOLP	Component 1 (ICA)	Component 2 (ICA)
SL25J141137+565119 HST-F475X	HST-F600LP	Component 1 (ICA)	Component 2 (ICA)
SL25J140156+554446 HST-F475X	HST-F600LP	Component 1 (ICA)	Component 2 (CA)
SL25J220329+020518 HST-F475X	HST-F600LP	Component 1 (ICA)	Component 2 (ICA)

IMAGES OF NINE SYSTEMS

Figure 2 | Hubble Space Telescope images of strongly lensed galaxies from the SL2S survey. These images are used to demonstrate the performance of the network on real data. The light of the lensing galaxies has been removed using independent component analysis of two filters, and circular masks with radii of 0.2" have been applied to bright cosmic rays and the lens centre. Each panel contains the object name in addition to the data marker used to show its parameters in Fig. 1.

RECOVERED PARAMETERS FOR REAL DATA

Figure 1 | Comparison of estimated parameters with their true values. The estimated values of the Einstein radius θ_E (a) and the *x* and *y* components of the complex ellipticity ε_x and ε_y (b and c) are shown on the *y* axis; the true values are shown on the *x* axis. The red dashed line marks the y = x diagonal, on which perfectly recovered parameters should lie. The shaded blue areas represent the 68% and 95% intervals of the

parameters recovered from a test set that the network has not been trained on. The small grey dots show the parameters of 10,000 test samples. The coloured data points and their error bars (95% confidence) correspond to real HST images of gravitational lenses, with the true parameters set to previously published values¹⁷.

WHAT ARE THE UNCERTAINTIES OF THE OUTPUT PARAMETERS?

Figure 1 | Comparison of estimated parameters with their true values. The estimated values of the Einstein radius θ_E (a) and the *x* and *y* components of the complex ellipticity ε_x and ε_y (b and c) are shown on the *y* axis; the true values are shown on the *x* axis. The red dashed line marks the y = x diagonal, on which perfectly recovered parameters should lie. The shaded blue areas represent the 68% and 95% intervals of the

parameters recovered from a test set that the network has not been trained on. The small grey dots show the parameters of 10,000 test samples. The coloured data points and their error bars (95% confidence) correspond to real HST images of gravitational lenses, with the true parameters set to previously published values¹⁷.

WHAT ARE THE UNCERTAINTIES OF THE OUTPUT PARAMETERS?

Sources of errors in the predictions:

1- ALEATORIC.

INHERENT CORRUPTIONS TO THE INPUT DATA: NOISE, PSF BLURRING, ETC.

2 -EPISTEMIC.

ERRORS MADE BY THE NETWORKS: THESE COULD BE DUE TO INSUFFICIENT TRAINING, NETWORK ARCHITECTURE, ETC.

What is the log-likelihood of the Network Output, $\mathcal{L}(\mathbf{y}_n, \hat{\mathbf{y}}_n(\mathbf{x}_n, \omega))$?

We approximate the likelihood with an analytic distribution.

Assume Gaussian:

$$\mathcal{L}(\mathbf{y}_n, \hat{\mathbf{y}}_n(\mathbf{x}_n, \omega)) \propto \sum_k \frac{-1}{2\sigma_k^2} ||y_{n,k} - \hat{y}_{n,k}(\mathbf{x}_n, \omega)||^2 - \frac{1}{2} \log \sigma_k^2$$

EPISTEMIC UNCERTAINTIES

STANDARD NEURAL NETWORKS: WEIGHT HAVE FIXED, DETERMINISTIC VALUES

INPUT

HIDDEN

OUTPUT

EPISTEMIC UNCERTAINTIES

BAYESIAN NEURAL NETWORKS:

INSTEAD OF FIX VALUES, WEIGHTS ARE DEFINED BY PROBABILITY DISTRIBUTIONS

INPUT HIDDEN OUTPUT $P(\omega)$ 0.73 0.79 8.0 0.69

VARIATIONAL INFERENCE

REPLACE $P(\omega)$ by a distribution with a simple analytic form, $q(\omega)$, (e.g., a Gaussian).

Recap

1- PLACE DROPOUT BEFORE EVERY WEIGHT LAYER.2- TRAIN WITH DROPOUT, OPTIMIZING THE LOG LIKELIHOOD

$$\mathcal{L}(\mathbf{y}_n, \hat{\mathbf{y}}_n(\mathbf{x}_n, \omega)) \propto \sum_k \frac{-1}{2\sigma_k^2} ||y_{n,k} - \hat{y}_{n,k}(\mathbf{x}_n, \omega)||^2 - \frac{1}{2} \log \sigma_k^2$$

3- AT TEST TIME, KEEP DROPOUT ON. PERFORM MONTE CARLO DROPOUT: INPUT THE DATA MULTIPLE TIMES, PERFORM
DROPOUT AND COLLECT THE OUTPUTS.
4- ADD YOUR ALEATORIC UNCERTAINTY (THE SIGMA ABOVE) TO

THE SAMPLE.

5- Done

EXAMPLE

UNCERTAINTIES ON THE MAGNIFICATION OF LENSES

Figure 1. Predicted 68.3% uncertainties for lensing flux magnification, $\mu_{\rm F}$, as a function of the true value of this parameter. The orange, blue, and black correspond to examples where the true values fall within the 68.3, 95.5, and 99.7% confidence intervals respectively.

Perreault Levasseur, Hezaveh, Wechsler, ApJL, Nov 2017

true density map

true density map

true density map

Are neural nets doing a dictionary look-up? No

true density map

Are neural nets doing a dictionary look-up? No

Are neural nets doing a dictionary look-up? No

estimated density map (network output)

THANK YOU