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SCIENCE MOTIVATIONS FOR STRONG LENSING

Background source

Use strong lensing as a cosmic telescope.

Foreground structure

Use lensing to probe the distribution of matter in the lensing galaxies.

Cosmology

Use time delays to measure Hy



LENS MODELING:
THE KEY TO ALL THESE SCIENCES

1- HOW DOES THE BACKGROUND
SOURCE TRULY LOOK LIKE? WHAT IS
THE UNDISTORTED IMAGE?

2- HOW IS MATTER DISTRIBUTED IN THE
LENSING STRUCTURE?




LENS MODELING

POSTULATE A SOURCE
MORPHOLOGY (WITH
PARAMETERS PS)

RAY-TRACING

SIMULATION
POSTULATE A MASS GENERATE THE LENSED
DISTRIBUTION IN THE LENS IMAGE OF THE SOURCE

(WITH PARAMETERS PM)

MAXIMIZE THE LIKELIHOOD OF THE MODEL
PARAMETERS GIVEN THE DATA




THE UGLY:
OPTIMIZATION

GIVEN THE DATA, WE NEED TO FIND THE PARAMETERS THAT OPTIMIZE A GOODNESS-OF-
FIT FUNCTION, (TYPICALLY THE PARAMETER POSTERIOR).

THIS IS DONE USING OPTIMIZERS.

THE PARAMETER SPACE IS FULL OF CRAZY-LOOKING LOCAL MINIMA: OPTIMIZERS GET
STUCK REGULARLY.

LIKELIHOOD EVALUATIONS ARE VERY EXPENSIVE.

THIS MAKES THE PROCESS BOTH SLOW, AND IN NEED OF CONSTANT BABY SITTING (NOT
AUTOMATED).
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SAD STORY OF A POOR OPTIMIZER

data model data - model

.

true data parameters model parameters




LOOKING INTO THE FUTURE:

New Lenses

For future surveys we find that, assuming Poisson limited lens
galaxy subtraction, searches of the DES, LSST, and Euclid data sets

should discover 2400, 120000, and 170000 galaxy—galaxy strong
lenses, respectively

Collett, ApJ. 2015




Looking into the future:

Methods?

How are we going to analyze 170,000 lenses?

Lens modeling is very slow.
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Even if we pay 100 people to work
on this, it'll be 14 years!!! Old
method are simply not feasible.

Lens modeling sweatshop of 2022



A BAD LOCAL MINIMUM IS EASILY
RECOGNIZABLE TO HUMAN EYE

data model data - model
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true data parameters model parameters




COMPUTER VISION:
CONVOLUTIONAL NEURAL NETWORKS

COMMONLY USED FOR IMAGE RECOGNITION AND CLASSIFICATION

convolution + max pooling vec
nonlinearity
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convolution + pooling layers fully connected layers  Nx binary classification




CONVOLUTIONAL NEURAL NETWORKS:
PREVIOUSLY USED TO FIND LENSES
(CLASSIFICATION)

THEY CAN BE TRAINED TO CLASSIFY IMAGES:
TWO CLASSES: LENSES VS. NON-LENSES

CMU DeepLens: Deep Learning For Automatic Finding Strong Gravitational Lenses in the Kilo Degree
Image-based Galaxy-Galaxy Strong Lens Finding Survey with Convolutional Neural Networks
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Fast automated analysis of strong gravitational lenses with convolutional neural networks
Hezaveh, Perreault Levasseur, Marshall Nature 548, 555-557, Aug 2017




TRAINING DATA

WE NEED A LARGE NUMBER OF TRAINING IMAGES. THERE ARE ONLY A COUPLE OF
HUNDRED OF GRAVITATIONAL LENSES KNOWN TO DATE. BUT WE CAN SIMULATE
THESE IMAGES VERY FAST.

THE TRAINING IMAGES NEED TO BE AS REALISTIC AS POSSIBLE, ENCOMPASSING
ALL OPTICAL EFFECT AND NOISE PROPERTIES OF REAL TELESCOPE IMAGES. THESE
INCLUDE:

REALISTIC IMAGES OF GALAXIES

OPTICAL BLURRING (TELESCOPE POINT SPREAD FUNCTION)
ADDITION OF POISSON SHOT NOISE (DISCRETE PHOTON NOISE)
DETECTOR NOISE

COSMIC RAYS, HOT PIXELS, AND OTHER ARTIFACTS

/ERO BIAS



PRODUCING THE TRAINING DATA

GET A REAL IMAGE OF A GALAXY LENS IT BLUR IT WITH A PSF

APPLY RANDOM MASKS ADD COSMIC RAYS ADD NOISE



EXAMPLES OF SIMULATED DATA




GENERAL INFORMATION
ABOUT THE NETWORKS

Predict the parameters of SIE and shear (5-8 parameters)
Half a million (simulated) images for training.
Trained multiple networks: e.g., Inception.v4 (hundreds of layers)

Training time: About 1-2 day(s) on a single GPU
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Convolution
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MaxPool
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Dropout

= wemas  |nception.v4 (designed by Google)

- Softmax
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Ein rad (predict)

RECOVERED PARAMETERS FOR
SIMULATED TEST DATA
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Ein rad (predict)
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RECOVERED PARAMETERS FOR

SIMULATED TEST DATA

10 MILLION TIMES FASTER THAN ML LENS MODELING:
0.01 SECONDS ON A SINGLE GPU
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Ein rad (true)

WHAT WOULD TAKE 100 PEOPLE 14 YEARS
AND 12 MILLION CPU HOURS CAN BE DONE
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IN HALF AN HOUR ON A SINGLE GPU
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WHAT ABOUT THE LIGHT OF THE LENSING GALAXY"?

SDSS JO91240028 SDSS J120440358 S J1153+4612 SOSS J2341 40000




WHAT ABOUT THE LIGHT OF THE LENSING GALAXY"?

USUALLY PEOPLE FIT A MODEL (E.G., SERSIC) TO THE LIGHT DISTRIBUTION OF THE LENS
GALAXY AND REMOVE IT FROM THE DATA. THIS IS:

1) TIME CONSUMING, REQUIRING ANOTHER NON-LINEAR OPTIMIZATION PROBLEM
2) NOT AUTOMATED, REQUIRING GUESSES FOR STARTING POINTS, A CHOICE OF AN

APPROPRIATE PROFILE, ETC.
3) OFTEN LEAVES HIGH RESIDUALS (GALAXIES AREN'T EXACTLY SERSIC, OR KING, ETC.)

4) THEY DON’'T TAKE ADVANTAGE OF COLOR DIFFERENCE IN THE TWO SOURCES.



USE ANOTHER MACHINE LEARNING TOOL:
INDEPENDENT COMPONENT ANALYSIS (ICA)

HETFeoL P Component 1 JCA)
o &
SL2I8141137 45881
HST.Fa78X HST-FEOULP Component 2 0CA)
) 0 o
\ &
HST-FEONP
SL2SR2029. 020618
MST-FAT5X HET-FEOXP Component 2 0CA)

Hezaveh, Perreault Levasseur, Marshall, Nature Aug. 2017



IMAGES OF NINE SYSTEMS

Figure 2 | Hubble Space Telescope images of
strongly lensed galaxies from the SL2S survey.
These images are used to demonstrate the
performance of the network on real data. The
light of the lensing galaxies has been removed
using independent component analysis of two
filters, and circular masks with radii of 0.2" have
been applied to bright cosmic rays and the lens
centre. Each panel contains the object name in
addition to the data marker used to show its

parameters in Fig. 1.
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Hezaveh, Perreault Levasseur, Marshall, Nature Aug. 2017



RECOVERED PARAMETERS FOR REAL DATA
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Figure 1 | Comparison of estimated parameters with their true

values. The estimated values of the Einstein radius g (a) and the x and

y components of the complex ellipticity £, and £, (b and ¢) are shown on
the y axis; the true values are shown on the x axis. The red dashed line
marks the y = x diagonal, on which perfectly recovered parameters should
lie. The shaded blue areas represent the 68% and 95% intervals of the

parameters recovered from a test set that the network has not been trained
on. The small grey dots show the parameters of 10,000 test samples. The
coloured data points and their error bars (95% confidence) correspond

to real HST images of gravitational lenses, with the true parameters set to
previously published values'’.

Hezaveh, Perreault Levasseur, Marshall, Nature Aug. 2017



WHAT ARE THE UNCERTAINTIES
OF THE OUTPUT PARAMETERS?
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Figure 1 | Comparison of estimated parameters with their true

values. The estimated values of the Einstein radius #g (a) and the x and

y components of the complex ellipticity £, and £, (b and ¢) are shown on
the y axis; the true values are shown on the x axis. The red dashed line
marks the y = x diagonal, on which perfectly recovered parameters should
lie. The shaded blue areas represent the 68% and 95% intervals of the
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parameters recovered from a test set that the network has not been trained
on. The small grey dots show the parameters of 10,000 test samples. The
coloured data points and their error bars (95% confidence) correspond

to real HST images of gravitational lenses, with the true parameters set to
previously published values'’.

Hezaveh, Perreault Levasseur, Marshall, Nature Aug. 2017



WHAT ARE THE UNCERTAINTIES
OF THE OUTPUT PARAMETERS?

SOURCES OF ERRORS IN THE PREDICTIONS:

1- ALEATORIC.
INHERENT CORRUPTIONS TO THE INPUT DATA: NOISE, PSF BLURRING, ETC.

2 -EPISTEMIC.

ERRORS MADE BY THE NETWORKS: THESE COULD BE DUE TO INSUFFICIENT
TRAINING, NETWORK ARCHITECTURE, ETC.



WHAT IS THE LOG-LIKELIHOOD OF THE NETWORK
OUTPUT/ E(men(xmw)) ?

We approximate the likelihood with an analytic
distribution.

Assume Gaussian:

1

E(Ynayn(xnaw))oczz 2||Ynk ynk(xn w)” _Elogak



EPISTEMIC UNCERTAINTIES

STANDARD NEURAL NETWORKS:
WEIGHT HAVE FIXED, DETERMINISTIC VALUES

INPUT HIDDEN OuUTPUT




EPISTEMIC UNCERTAINTIES

BAYESIAN NEURAL NETWORKS:
INSTEAD OF FIX VALUES, WEIGHTS ARE DEFINED BY PROBABILITY DISTRIBUTIONS

INPUT HIDOEN ouTPUT




VARIATIONAL INFERENCE

REPLACE P(w) BY A DISTRIBUTION WITH A SIMPLE
ANALYTIC FORM, g(w), (E.G., A GAUSSIAN).

INPUT HIDOEN ouTPUT
g(w)




RECAP

1- PLACE DROPOUT BEFORE EVERY WEIGHT LAYER.
2- TRAIN WITH DROPOUT, OPTIMIZING THE LOG LIKELIHOOD

. -1 . 1
E(ynaYn(xnaw)) X Z —2||yn,k_yn,k(xn:w)||2_ 5 log O-l%
k k

20
3- AT TEST TIME, KEEP DROPOUT ON. PERFORM MONTE CARLO
DROPOUT: INPUT THE DATA MULTIPLE TIMES, PERFORM
DROPOUT AND COLLECT THE OUTPUTS.
4- ADD YOUR ALEATORIC UNCERTAINTY (THE SIGMA ABOVE) TO
THE SAMPLE.
5- DONE



EXAMPLE

UNCERTAINTIES ON THE MAGNIFICATION OF LENSES
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Figure 1. Predicted 68.3% uncertainties for lensing flux magnification, ug,
as a function of the true value of this parameter. The orange, blue, and black

correspond to examples where the true values fall within the 68.3, 95.5, and
99.7% confidence intervals respectively.

Perreault Levasseur, Hezaveh, Wechsler, ApJL, Nov 2017



ARE NEURAL NETS DOING A DICTIONARY LOOK-UP?
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observation (input image)

true density map




ARE NEURAL NETS DOING A DICTIONARY LOOK-UP?

observation (input image) true density map estimated density map (network output)
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ARE NEURAL NETS DOING A DICTIONARY LOOK-UP?
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ARE NEURAL NETS DOING A DICTIONARY LOOK-UP?
NO

observation (input image) true density map estimated density map (network output)




ARE NEURAL NETS DOING A DICTIONARY LOOK-UP?
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observation (input image) true density map estimated density map (network output)




ARE NEURAL NETS DOING A DICTIONARY LOOK-UP?
NO

observation (input image) true density map estimated density map (network output)
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