UV conformal window for asymptotic safety

1710.07615

Gustavo Medina Vazquez University of Sussex Advances in High Energy Physics and Cosmology 22/03/2018

Content

- Motivation
- Fixed points in gauge theories
- Fixed point at next-to-next-to-leading order
- Constraints of the conformal window
 - Constraints from fixed points
 - Constraints from beta functions
- Conclusions

Motivation

- Asymptotic safety: interactive fixed point; residual interactions in the UV
- Critical phenomena: Wilson-Fisher fixed point (ϕ^4 theory in $d = 4 \epsilon$ dimensions)
- A quantum theory of gravity may be non-perturbatively renormalizable provided there is an interactive UV fixed point.
- More recently, necessary conditions and no-go theorems have been derived for the existence of UV fixed points in general gauge theories.
- The search for asymptotic safety has also extended to supersymmetric and phenomenological motivated models
- An important question relates to the range of the conformal window of such theories.
- IR conformal windows in QCD-like theories have been extensively studied, and are known to extend past the domain of perturbation theory
- We want to understand what is the extent of the UV conformal window in asymptotically safe gauge theories

(Wilson & Fisher, 1972)

(Weinberg, 1979)

(Bond & Litim, 2016)

(Martin & Wells, 2000) (Bond & Litim, 2017) (Bond, Hiller, et al., 2017)

(Banks & Zaks, 1982) (Appelquist et al., 2008) (Del Debbio., 2011)

Fixed points in gauge theories

• Fixed points are obtained from the renormalization group flow of couplings (beta functions), e.g.:

$$\beta^{(2)} = -B\alpha^2 + C\alpha^3$$

• With a non-trivial fixed point:

$$\alpha^* = \frac{B}{C}$$

• If $|B| \ll |C|$, then the fixed point is weakly interacting and can be expressed as a series expansion in a small parameter ϵ in perturbation theory, i.e.:

$$\alpha^* = \lambda_1 \epsilon + \lambda_2 \epsilon^2 + \lambda_3 \epsilon^3 + O(\epsilon^n)$$

Fixed points in gauge theories

• A weakly coupled interacting UV fixed point requires:

 $\alpha^* = \frac{B}{C}$

 $B < 0; \quad C < 0$ $|B| \ll |C|$

- The first condition can only be realized with the help of Yukawa interactions (Bond & Litim, 2016)
- The second one is model dependent, e.g.: for N_F fermions transforming on the fundamental of $SU(N_C)$, we can take the Veneziano limit:

(Litim & Sannino, 2014)

$$N_C \to \infty; \quad N_F \to \infty$$

 $B \propto \epsilon$
 $\epsilon = \frac{N_F}{N_C} - \frac{11}{2}$

The model – Field content

$$L = L_{\rm YM} + L_{\rm kin.} + L_{\rm Yuk.} + L_{\rm pot.}$$

$$L_{\rm YM} = -\frac{1}{2} \operatorname{Tr} F^{\mu\nu} F_{\mu\nu}$$

$$L_{\rm kin.} = \operatorname{Tr} \left(\overline{Q} \, i \not{D} \, Q \right) + \operatorname{Tr} \left(\partial_{\mu} H^{\dagger} \, \partial^{\mu} H \right)$$

$$\alpha_g = \frac{g^2 N_C}{(4\pi)^2}; \quad \alpha_y = \frac{y^2 N_C}{(4\pi)^2}$$

$$L_{\rm Yuk.} = -y \operatorname{Tr} \left(\overline{Q}_L \, H \, Q_R \right) + \text{h.c.}$$

$$\alpha_u = \frac{u N_F}{(4\pi)^2}; \quad \alpha_v = \frac{v N_F^2}{(4\pi)^2}$$

- 4d gauge theory
- Fermions charged under a gauge group $\mathrm{SU}(N_{\mathrm{C}})$ in the fundamental representation
- Scalar singlets with self-interactions and Yukawa interactions
- $N_{\rm F}$ flavours of fermions and scalars

Fixed point – Sub-leading corrections

• The approximation is denoted by the number of loop orders retained:

$$\left(\beta_g^{(n)},\,\beta_y^{(m)},\,\beta_{u,v}^{(l)}\right)\equiv(n,m,l)$$

• We find that the approximation (n + 1, n, n) completely determines the coefficient of order ϵ^n in the series expansion

(2, 1, 1)

$$(3, 2, 2) \qquad (4, 3, 3) \qquad (n + 1, n, n)$$

$$\alpha_i^* = \lambda_{1i}\epsilon + \lambda_{2i}\epsilon^2 + \lambda_{3i}\epsilon^3 + O(\epsilon^n)$$

Fixed point – Sub-leading corrections

• Following this ordering, we can compute the ϵ^2 coefficients analytically from the beta functions. Numerically, we find:

$$\begin{split} &\alpha_g^* = 0.4561\epsilon + 0.7808\epsilon^2 + O\left(\epsilon^3\right) \\ &\alpha_y^* = 0.2105\epsilon + 0.5082\epsilon^2 + O\left(\epsilon^3\right) \\ &\alpha_u^* = 0.1998\epsilon + 0.4403\epsilon^2 + O\left(\epsilon^3\right) \\ &\alpha_v^* = -0.1373\epsilon - 0.6318\epsilon^2 + O\left(\epsilon^3\right) \end{split} \tag{Bond et al., 2017}$$

- Sub-leading corrections show no change in sign. This argues in favor of the stability of the fixed point, but may be a hint of a slow rate of convergence.
- We should check vacuum stability, which is dictated by the scalar potential.

Vacuum stability

• In order to have a stable vacuum state, we require for the scalar potential to be bounded from below. In the present setting, this means:

 $\alpha_u^* > 0, \quad \alpha_u^* + \alpha_v^* > 0$

(Litim, Mojaza & Sannino, 2016)

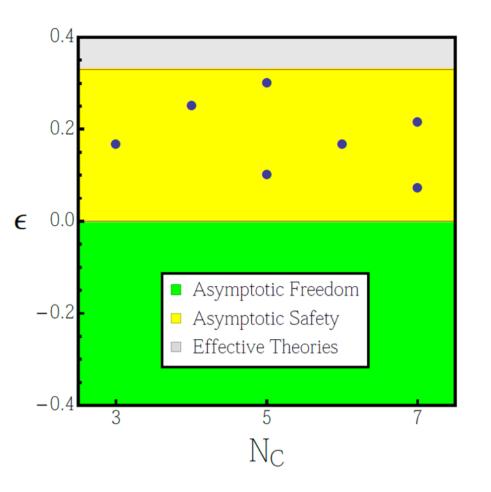
• As we improve our approximation, we notice a change in sign in the quadratic term of the fixed point expansion:

$$\begin{aligned} \alpha_u^* + \alpha_v^*|_{(211)} &= 0.0625\epsilon + O\left(\epsilon^3\right) \\ \alpha_u^* + \alpha_v^*|_{(321)} &= 0.0625\epsilon + 0.1535\epsilon^2 + O\left(\epsilon^3\right) \\ \alpha_u^* + \alpha_v^*|_{(322)} &= 0.0625\epsilon - 0.1915\epsilon^2 + O\left(\epsilon^3\right) \end{aligned}$$

Constraints from fixed points

- This remarkable discovery sets the boundary of the conformal window in the current approximation (3,2,2)
- In the plot, the blue dots indicate the value of ϵ for the first integer values of N_F
- The conformal window is delimited from below by asymptotic freedom and from above by vacuum instability:

 $0 < \epsilon < 0.326$



(Bond et al., 2017)

Constraints from beta functions

- Instead of using a series expansion, we could also compute constraints from the beta functions.
- Suppose the beta functions are exact at the chosen approximation. This approach is sensitive to sub-leading corrections in epsilon, e.g.: At 2 loop in the gauge beta function we should expect at most terms of order ε³

$$\beta_g^{(2)} = \left(25 + \frac{26}{3}\epsilon\right)\alpha_g^3 - 2\left(\frac{11}{2} + \epsilon\right)^2\alpha_y\alpha_g^2 \qquad \beta_g^{(n)} \sim \epsilon^{n+1}, \quad n \ge 2$$

 Terms with higher powers of epsilon will compete with higher loop order terms, and can be regarded as incomplete corrections.

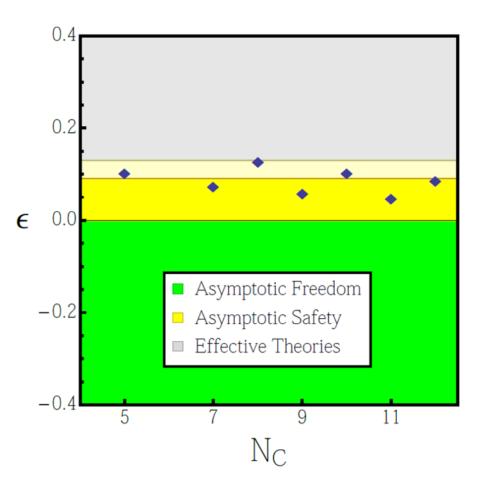
$$\epsilon \alpha_g^3, \epsilon \alpha_y \alpha_g^2 \sim O(\epsilon^4) \sim \beta_g^{(3)}$$

 $\epsilon^2 \alpha_y \alpha_g^2 \sim O(\epsilon^5) \sim \beta_g^{(4)}$

Constraints from beta functions

- The lower dark yellow region is the asymptotically safe region in the (3,2,2) approximation (constraint from vacuum stability)
- The upper light yellow region represents the (3,2,1) approximation (constraint from fixed point merger)
- In the plot, the blue dots indicate the value of ϵ for the first integer value of N_F
- This approach imposes a tighter bound on the conformal window:

$$\epsilon_{max} \approx 0.09 \dots 0.13$$



(Bond et al., 2017)

Conclusions

- With the inclusion of the 2-loop scalar beta functions, the UV fixed point has been consistently determined to order ϵ^2 .
- Estimates for the conformal window have been computed in two approximations. Constraints from fixed point convergence leads to a wider conformal window, while those derived from beta functions tend to reduce it.
- Vacuum stability provides the strongest constraint at the complete next-to-next-to-leading order (3,2,2).
- The full conformal window spans a region entirely within the domain of perturbation theory. Therefore the perturbative description of the UV fixed point is completely reliable up to the bounds provided.

References

Appelquist, T., Fleming, G. T., & Neil, E. T. (2007). Lattice Study of the Conformal Window in QCD-like Theories. http://doi.org/10.1103/PhysRevLett.100.171607

Banks, T., & Zaks, A. (1982). On the phase structure of vector-like gauge theories with massless fermions. Nuclear Physics, Section B, 196(2), 189–204. http://doi.org/10.1016/0550-3213(82)90035-9

Bond, A. D., & Litim, D. F. (2016). Theorems for Asymptotic Safety of Gauge Theories, 1–21. Retrieved from http://arxiv.org/abs/1608.00519

Bond, A. D., & Litim, D. F. (n.d.). Asymptotic safety guaranteed in supersymmetry. Retrieved from https://arxiv.org/pdf/1709.06953.pdf

Bond, A. D., Hiller, G., Kowalska, K., & Litim, D. F. (2017). Directions for model building from asymptotic safety. Retrieved from http://arxiv.org/abs/1702.01727

Bond, A. D., Litim, D. F., Vazquez, G. M., & Steudtner, T. (2017). UV conformal window for asymptotic safety. Retrieved from http://arxiv.org/abs/1710.07615

Del Debbio, L. (2011). The conformal window on the lattice. Retrieved from http://arxiv.org/abs/1102.4066

- Machacek, M. E., & Vaughn, M. T. (1983). Two-loop renormalization group equations in a general quantum field theory (I). Wave function renormalization. *Nuclear Physics B*, 222(1), 83–103. http://doi.org/10.1016/0550-3213(83)90610-7
- Machacek, M. E., & Vaughn, M. T. (1984). Two-loop renormalization group equations in a general quantum field theory (II). Yukawa couplings. *Nuclear Physics, Section B, 236*(1), 221–232. http://doi.org/10.1016/0550-3213(84)90533-9

Machacek, M. E., & Vaughn, M. T. (1985). Two-loop renormalization group equations in a general quantum field theory (III). Scalar quark couplings. *Nuclear Physics B*, 249(1), 70–92. http://doi.org/10.1016/0550-3213(85)90040-9

Martin, S. P., & Wells, J. D. (2000). Constraints on ultraviolet-stable fixed points in supersymmetric gauge theories. Retrieved from https://arxiv.org/pdf/hep-ph/0011382.pdf

Litim, D. F., & Sannino, F. (2014). Asymptotic safety guaranteed. Journal of High Energy Physics, 2014(12), 1–33. http://doi.org/10.1007/JHEP12(2014)178

Litim, D. F., Mojaza, M., & Sannino, F. (2016). Vacuum stability of asymptotically safe gauge-Yukawa theories. *Journal of High Energy Physics, 2016*(1), 81. http://doi.org/10.1007/JHEP01(2016)081

Luo, M., Wang, H., & Xiao, Y. (2003). Two-loop renormalization group equations in general gauge field theories. *Physical Review D*, 67(6), 1–9. http://doi.org/10.1103/PhysRevD.67.065019

Pickering, A. G. M., Gracey, J. A., & Jones, D. R. T. (2001). Three loop gauge β-function for the most general single gauge-coupling theory. *Physics Letters B*, 512(1–2), 230–238. http://doi.org/10.1016/S0370-2693(01)00718-3

Weinberg, S. (1979). Ultraviolet divergences in quantum theories of gravitation, . In General Relativity: An Einstein centenary survey, ed. S. W. Hawking and W. Israel, 790-831.

Wilson, K. G., & Fisher, M. E. (1972). Critical exponents in 3.99 dimensions. Physical Review Letters, 28(4), 240–243. http://doi.org/10.1103/PhysRevLett.28.240