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Motivation

• Asymptotic safety: interactive fixed point; residual interactions in the UV

• Critical phenomena: Wilson-Fisher fixed point (      theory in                   dimensions)

• A quantum theory of gravity may be non-perturbatively renormalizable provided there 
is an interactive UV fixed point.

• More recently, necessary conditions and no-go theorems have been derived for the 
existence of UV fixed points in general gauge theories.

• The search for asymptotic safety has also extended to supersymmetric and 
phenomenological motivated models

• An important question relates to the range of the conformal window of such theories. 

• IR conformal windows in QCD-like theories have been extensively studied, and are 
known to extend past the domain of perturbation theory

• We want to understand what is the extent of the UV conformal window in 
asymptotically safe gauge theories

(Wilson & Fisher, 1972)

(Weinberg, 1979)

(Bond & Litim, 2016)

(Bond & Litim, 2017)
(Bond, Hiller, et al., 2017)

(Martin & Wells, 2000)

(Banks & Zaks, 1982)
(Appelquist et al., 2008)

(Del Debbio., 2011)



Fixed points in gauge theories

• Fixed points are obtained from the renormalization group flow of couplings (beta 
functions), e.g.:

• With a non-trivial fixed point:

• If                    , then the fixed point is weakly interacting and can be expressed as a 
series expansion in a small parameter    in perturbation theory, i.e.:



Fixed points in gauge theories

• A weakly coupled interacting UV fixed point requires:

• The first condition can only be realized with the help of Yukawa interactions

• The second one is model dependent, e.g.: for       fermions transforming on 
the fundamental of                , we can take the Veneziano limit:

(Bond & Litim, 2016)

(Litim & Sannino, 2014)



The model – Field content

• 4d gauge theory
• Fermions charged under a gauge group                 in the fundamental 

representation
• Scalar singlets with self-interactions and Yukawa interactions
• flavours of fermions and scalars



Fixed point – Sub-leading corrections

• We find that the approximation                          completely determines the 
coefficient of order      in the series expansion

• The approximation is denoted by the number of loop orders retained:



Fixed point – Sub-leading corrections

• Following this ordering, we can compute the      coefficients analytically from the 
beta functions. Numerically, we find:

• Sub-leading corrections show no change in sign. This argues in favor of the 
stability of the fixed point, but may be a hint of a slow rate of convergence.

• We should check vacuum stability, which is dictated by the scalar potential.

(Bond et al., 2017)



Vacuum stability

• In order to have a stable vacuum state, we require for the scalar potential to be 
bounded from below. In the present setting, this means:

• As we improve our approximation, we notice a change in sign in the quadratic 
term of the fixed point expansion:

(Litim, Mojaza & Sannino, 2016)



Constraints from fixed points

• This remarkable discovery sets the 
boundary of the conformal window in 
the current approximation (3,2,2)

• In the plot, the blue dots indicate the 
value of    for the first integer values of

• The conformal window is delimited 
from below by asymptotic freedom 
and from above by vacuum instability:

(Bond et al., 2017)



Constraints from beta functions

• Instead of using a series expansion, we could also compute constraints from the 
beta functions.

• Suppose the beta functions are exact at the chosen approximation. This approach 
is sensitive to sub-leading corrections in epsilon, e.g.:
At 2 loop in the gauge beta function we should expect at most terms of order

• Terms with higher powers of epsilon will 
compete with higher loop order terms, and 
can be regarded as incomplete corrections.



Constraints from beta functions

• The lower dark yellow region is the 
asymptotically safe region in the 
(3,2,2) approximation (constraint from 
vacuum stability)

• The upper light yellow region 
represents the (3,2,1) approximation 
(constraint from fixed point merger)

• In the plot, the blue dots indicate the 
value of    for the first integer value of

• This approach imposes a tighter bound 
on the conformal window:

(Bond et al., 2017)



• With the inclusion of the 2-loop scalar beta functions, the UV fixed point has 
been consistently determined to order     .

• Estimates for the conformal window have been computed in two approximations. 
Constraints from fixed point convergence leads to a wider conformal window, 
while those derived from beta functions tend to reduce it.

• Vacuum stability provides the strongest constraint at the complete next-to-next-
to-leading order (3,2,2).

• The full conformal window spans a region entirely within the domain of 
perturbation theory. Therefore the perturbative description of the UV fixed point 
is completely reliable up to the bounds provided.

Conclusions
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