Quantum Diffusion During Inflation and Primordial Black Holes

Chris Pattison

Based on arXiv:1707.00537 (JCAP10 2017 046)
Collaboration with David Wands, Vincent Vennin and Hooshyar Assadullahi

University of Southampton, 22nd March 2018

Portsmouth

Outline

- Introduction to stochastic- δN inflation
- Characteristic function formalism
- Application to primordial black holes
- Summary

Inflation

Inflation is a period of accelerated expansion of Universe.

Inflation is a period of accelerated expansion of Universe.
Cosmological inflation is needed to solve

- The flatness problem

Inflation is a period of accelerated expansion of Universe.
Cosmological inflation is needed to solve

- The flatness problem
- The horizon problem

Inflation is a period of accelerated expansion of Universe.
Cosmological inflation is needed to solve

- The flatness problem
- The horizon problem
- The monopole problem

Inflation

Inflation is a period of accelerated expansion of Universe.
Cosmological inflation is needed to solve

- The flatness problem
- The horizon problem
- The monopole problem
- Seed the large scale structure

Inflation is a period of accelerated expansion of Universe.
Cosmological inflation is needed to solve

- The flatness problem
- The horizon problem
- The monopole problem
- Seed the large scale structure

The inflaton ϕ has classical equation of motion

$$
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}(\phi)=0 .
$$

Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum fluctuations as white noise, ξ.

Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum fluctuations as white noise, ξ.

Then ϕ is described by a Langevin equation

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} N}=-\frac{V^{\prime}}{3 H^{2}}+\frac{H}{2 \pi} \xi(N)
$$

where $\langle\xi(N)\rangle=0$ and $\left\langle\xi(N) \xi\left(N^{\prime}\right)\right\rangle=\delta\left(N-N^{\prime}\right), k<a H$ and $N=\int H \mathrm{~d} t$.

Inflaton evolves under Langevin equation until ϕ reaches $\phi_{\text {end }}$ where inflation ends.

Figure 1: A reflective wall is added at ϕ_{uv} to prevent the field from exploring arbitrarily large values.

Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ζ is

$$
\zeta(t, \mathbf{x})=N(t, \mathbf{x})-N_{0}(t) \equiv \delta N
$$

where N is the local number of e-folds of inflation, and N_{0} is the amount of expansion in an unperturbed universe.

Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ζ is

$$
\zeta(t, \mathbf{x})=N(t, \mathbf{x})-N_{0}(t) \equiv \delta N
$$

where N is the local number of e-folds of inflation, and N_{0} is the amount of expansion in an unperturbed universe.

Figure 2: N_{0} is at a zero curvature surface, final slice is constant density.

Stochastic- δN Formalism

The identification of ζ and δN defines the δN formalism.

Stochastic- δN Formalism

The identification of ζ and δN defines the δN formalism.

The stochastic formalism treats the number of e-folds N as a random variable, denoted \mathcal{N}.

Stochastic- δN Formalism

The identification of ζ and δN defines the δN formalism.

The stochastic formalism treats the number of e-folds N as a random variable, denoted \mathcal{N}.

This reduces calculating curvature perturbations to calculating statistics of \mathcal{N} realised under Langevin equation

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} N}=-\frac{V^{\prime}}{3 H^{2}}+\frac{H}{2 \pi} \xi(\mathcal{N}) .
$$

Characteristic Function Formalism

We want to know about the moments of \mathcal{N}, and set $f_{n}(\phi)=\left\langle\mathcal{N}^{n}(\phi)\right\rangle$. Characteristic function $\chi_{\mathcal{N}}(t, \phi)$ is

$$
\begin{aligned}
\chi_{\mathcal{N}}(t, \phi) & =\left\langle e^{i t \mathcal{N}(\phi)}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} f_{n}(\phi) .
\end{aligned}
$$

Characteristic Function Formalism

We want to know about the moments of \mathcal{N}, and set $f_{n}(\phi)=\left\langle\mathcal{N}^{n}(\phi)\right\rangle$. Characteristic function $\chi_{\mathcal{N}}(t, \phi)$ is

$$
\begin{aligned}
\chi_{\mathcal{N}}(t, \phi) & =\left\langle e^{i t \mathcal{N}(\phi)}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} f_{n}(\phi) .
\end{aligned}
$$

$\chi_{\mathcal{N}}$ is related to the PDF $P(\mathcal{N}, \phi)$ by

$$
P(\delta \mathcal{N}, \phi)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t[\delta \mathcal{N}+\langle\mathcal{N}\rangle(\phi)]} \chi_{\mathcal{N}}(t, \phi) \mathrm{d} t
$$

For PBHs, we need the full PDF, so all the moments.

For PBHs, we need the full PDF, so all the moments.
Characteristic function satisfies the PDE

$$
\left[\frac{\partial^{2}}{\partial \phi^{2}}-\frac{v^{\prime}}{v^{2}} \frac{\partial}{\partial \phi}+\frac{i t}{v M_{\mathrm{Pl}}^{2}}\right] \chi_{\mathcal{N}}(t, \phi)=0 .
$$

For PBHs, we need the full PDF, so all the moments.
Characteristic function satisfies the PDE

$$
\left[\frac{\partial^{2}}{\partial \phi^{2}}-\frac{v^{\prime}}{v^{2}} \frac{\partial}{\partial \phi}+\frac{i t}{v M_{\mathrm{Pl}}^{2}}\right] \chi_{\mathcal{N}}(t, \phi)=0 .
$$

Inverse Fourier transforming this gives the full PDF!

Simple Example

As an example, we take the potential

$$
v(\phi)=v_{0}\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{2} .
$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t, \phi)$

Simple Example

As an example, we take the potential

$$
v(\phi)=v_{0}\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{2} .
$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t, \phi)$
- Fourier transform (numerically!) to find the PDF of $\delta \mathcal{N}$, i.e. of the curvature perturbations.

Simple Example

As an example, we take the potential

$$
v(\phi)=v_{0}\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{2} .
$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t, \phi)$
- Fourier transform (numerically!) to find the PDF of $\delta \mathcal{N}$, i.e. of the curvature perturbations.

In this case, we can solve everything analytically!

Figure 3: Plot of the PDF of \mathcal{N} against \mathcal{N}, for the potential $v(\phi)=v_{0}\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{2}$.

Application to Primordial Black Holes (PBHs)

If $\zeta>\zeta_{c}$, collapse to form PBHs
The number of PBHs produced is then calculated from the probability distribution $P(\delta \mathcal{N}, \phi)$ of these large perturbations using

$$
\beta[M(\phi)]=2 \int_{\zeta_{\mathrm{c}}}^{\infty} P(\delta \mathcal{N}, \phi) \mathrm{d} \delta \mathcal{N} .
$$

Application to Primordial Black Holes (PBHs)

If $\zeta>\zeta_{c}$, collapse to form PBHs
The number of PBHs produced is then calculated from the probability distribution $P(\delta \mathcal{N}, \phi)$ of these large perturbations using

$$
\beta[M(\phi)]=2 \int_{\zeta_{\mathrm{c}}}^{\infty} P(\delta \mathcal{N}, \phi) \mathrm{d} \delta \mathcal{N} .
$$

This gives the mass fraction of the universe contained in PBHs

Gaussian Example

It is typically assumed ζ has a Gaussian distribution.

Stochastic Limit

Inflationary models that produce $\zeta>\zeta_{\mathrm{c}}$ can be approximated by a flat potential at the end of inflation, so $v \simeq v_{0}$.

For $v=v_{0}$, we can solve for $\chi_{\mathcal{N}}$ exactly, and even perform the inverse Fourier transform analytically.

For $v=v_{0}$, we can solve for $\chi_{\mathcal{N}}$ exactly, and even perform the inverse Fourier transform analytically.

The PDF in this limit is given by

$$
P(\mathcal{N}, \phi)=-\frac{\pi}{2 \mu^{2}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2} x, e^{-\frac{\pi^{2}}{\mu^{2}} \mathcal{N}}\right)
$$

For $v=v_{0}$, we can solve for $\chi_{\mathcal{N}}$ exactly, and even perform the inverse Fourier transform analytically.

The PDF in this limit is given by

$$
P(\mathcal{N}, \phi)=-\frac{\pi}{2 \mu^{2}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2} x, e^{-\frac{\pi^{2}}{\mu^{2}} \mathcal{N}}\right)
$$

where

$$
\mu^{2}=\frac{\Delta \phi_{\mathrm{well}}^{2}}{v_{0} M_{\mathrm{Pl}}^{2}}, \quad x=\frac{\phi-\phi_{\mathrm{end}}}{\Delta \phi_{\mathrm{well}}}
$$

and ϑ_{2} is the second elliptic theta function.

Figure 4: The PDF we obtain for a flat potential.

Mass fraction

For the flat potential, we can find the mass fraction β analytically.

Mass fraction

For the flat potential, we can find the mass fraction β analytically.

The expression we find depends on ϕ, μ and ζ_{c}.

Figure 5: The mass fraction β is plotted as a function of μ, with $\zeta_{\mathrm{c}}=1$.

- The stochastic- $\delta \mathcal{N}$ formalism is needed to analyse curvature perturbations and PBH formation.
- We developed a characteristic function formalism to calculate the PDF of large fluctuations.
- Taking a classical limit $v \ll 1$ allows us to recover the classical results, and provide a first NG correction.
- In the stochastic limit we derived a new constraint on μ (height of well vs width of well).

Future Work

- Recent PBH models (Garcia-Bellido et al, 2017) exhibit slow-roll violation, i.e. a phase of ultra slow-roll. Formalism needs to be checked here.
- Study higher-order corrections to the tail of the Gaussian, even in the classical case
- Extend the formalism to include multi-field inflation.

