Quantum Diffusion During Inflation and Primordial Black Holes

Chris Pattison

Based on arXiv:1707.00537 (JCAP10 2017 046) Collaboration with David Wands, Vincent Vennin and Hooshyar Assadullahi

University of Southampton, 22nd March 2018

Chris Pattison (ICG, Portsmouth) christopher.pattison@port.ac.uk

- Introduction to stochastic- δN inflation
- Characteristic function formalism
- Application to primordial black holes
- Summary

Cosmological inflation is needed to solve

• The flatness problem

Cosmological inflation is needed to solve

- The flatness problem
- The horizon problem

Cosmological inflation is needed to solve

- The flatness problem
- The horizon problem
- The monopole problem

Cosmological inflation is needed to solve

- The flatness problem
- The horizon problem
- The monopole problem
- Seed the large scale structure

Cosmological inflation is needed to solve

- The flatness problem
- The horizon problem
- The monopole problem
- Seed the large scale structure

The inflaton ϕ has classical equation of motion

 $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0.$

Stochastic inflation (Starobinsky, 1986) treats the quantum fluctuations as white noise, ξ .

Stochastic inflation (Starobinsky, 1986) treats the quantum fluctuations as white noise, ξ .

Then ϕ is described by a Langevin equation

$$\frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{V'}{3H^2} + \frac{H}{2\pi}\xi\left(N\right)\,,$$

where $\langle \xi(N) \rangle = 0$ and $\langle \xi(N) \xi(N') \rangle = \delta(N - N')$, k < aH and $N = \int H dt$.

Inflaton evolves under Langevin equation until ϕ reaches $\phi_{\rm end}$ where inflation ends.

Figure 1: A reflective wall is added at ϕ_{uv} to prevent the field from exploring arbitrarily large values.

Chris Pattison (ICG, Portsmouth) chris

christopher.pattison@port.ac.uk

Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ζ is

$$\zeta(t, \mathbf{x}) = N(t, \mathbf{x}) - N_0(t) \equiv \delta N \,,$$

where N is the local number of e-folds of inflation, and N_0 is the amount of expansion in an unperturbed universe.

Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ζ is

$$\zeta(t, \mathbf{x}) = N(t, \mathbf{x}) - N_0(t) \equiv \delta N \,,$$

where N is the local number of e-folds of inflation, and N_0 is the amount of expansion in an unperturbed universe.

Figure 2: N_0 is at a zero curvature surface, final slice is constant density.

Chris Pattison (ICG, Portsmouth) christopher.pattison@port.ac.uk

The identification of ζ and δN defines the δN formalism.

The identification of ζ and δN defines the δN formalism.

The stochastic formalism treats the number of e-folds N as a random variable, denoted \mathcal{N} .

The identification of ζ and δN defines the δN formalism.

The stochastic formalism treats the number of e-folds N as a random variable, denoted \mathcal{N} .

This reduces calculating curvature perturbations to calculating statistics of ${\cal N}$ realised under Langevin equation

$$\frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{V'}{3H^2} + \frac{H}{2\pi}\xi\left(\mathcal{N}\right) \,.$$

We want to know about the moments of \mathcal{N} , and set $f_n(\phi) = \langle \mathcal{N}^n(\phi) \rangle$. Characteristic function $\chi_{\mathcal{N}}(t, \phi)$ is

$$\chi_{\mathcal{N}}(t,\phi) = \left\langle e^{it\mathcal{N}(\phi)} \right\rangle$$
$$= \sum_{n=0}^{\infty} \frac{(it)^n}{n!} f_n(\phi) \,.$$

We want to know about the moments of \mathcal{N} , and set $f_n(\phi) = \langle \mathcal{N}^n(\phi) \rangle$. Characteristic function $\chi_{\mathcal{N}}(t, \phi)$ is

$$\chi_{\mathcal{N}}(t,\phi) = \left\langle e^{it\mathcal{N}(\phi)} \right\rangle$$
$$= \sum_{n=0}^{\infty} \frac{(it)^n}{n!} f_n(\phi) \,.$$

 $\chi_{\mathcal{N}}$ is related to the PDF $P(\mathcal{N},\phi)$ by

$$P\left(\delta\mathcal{N},\phi\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-it[\delta\mathcal{N} + \langle\mathcal{N}\rangle(\phi)]} \chi_{\mathcal{N}}\left(t,\phi\right) \mathrm{d}t \,.$$

For PBHs, we need the full PDF, so all the moments.

Chris Pattison (ICG, Portsmouth) christopher.pattison@port.ac.uk

For PBHs, we need the full PDF, so all the moments.

Characteristic function satisfies the PDE

$$\left[\frac{\partial^2}{\partial\phi^2} - \frac{v'}{v^2}\frac{\partial}{\partial\phi} + \frac{it}{vM_{\rm Pl}^2}\right]\chi_{\mathcal{N}}(t,\phi) = 0\,.$$

For PBHs, we need the full PDF, so all the moments.

Characteristic function satisfies the PDE

$$\left[\frac{\partial^2}{\partial\phi^2} - \frac{v'}{v^2}\frac{\partial}{\partial\phi} + \frac{it}{vM_{\rm Pl}^2}\right]\chi_{\mathcal{N}}(t,\phi) = 0\,.$$

Inverse Fourier transforming this gives the full PDF!

As an example, we take the potential

$$v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$$

.

The computational program is then

• solve our ODE for $\chi_{\mathcal{N}}(t,\phi)$

As an example, we take the potential

$$v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$$

The computational program is then

- \bullet solve our ODE for $\chi_{\mathcal{N}}(t,\phi)$
- Fourier transform (numerically!) to find the PDF of δN , i.e. of the curvature perturbations.

As an example, we take the potential

$$v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t,\phi)$
- Fourier transform (numerically!) to find the PDF of δN , i.e. of the curvature perturbations.

In this case, we can solve everything analytically!

Figure 3: Plot of the PDF of \mathcal{N} against \mathcal{N} , for the potential $v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$.

Chris Pattison (ICG, Portsmouth)

If $\zeta > \zeta_{\rm c}$, collapse to form PBHs

The number of PBHs produced is then calculated from the probability distribution $P(\delta N, \phi)$ of these large perturbations using

$$\beta \left[M\left(\phi \right) \right] = 2 \int_{\zeta_c}^{\infty} P\left(\delta \mathcal{N}, \phi \right) \mathrm{d} \delta \mathcal{N} \,.$$

If $\zeta>\zeta_{\rm c},$ collapse to form PBHs

The number of PBHs produced is then calculated from the probability distribution $P(\delta N, \phi)$ of these large perturbations using

$$\beta \left[M\left(\phi \right) \right] = 2 \int_{\zeta_c}^{\infty} P\left(\delta \mathcal{N}, \phi \right) \mathrm{d} \delta \mathcal{N} \,.$$

This gives the mass fraction of the universe contained in PBHs

Gaussian Example

It is typically assumed ζ has a Gaussian distribution.

Stochastic Limit

Inflationary models that produce $\zeta > \zeta_c$ can be approximated by a flat potential at the end of inflation, so $v \simeq v_0$.

For $v = v_0$, we can solve for χ_N exactly, and even perform the inverse Fourier transform analytically.

For $v = v_0$, we can solve for χ_N exactly, and even perform the inverse Fourier transform analytically.

The PDF in this limit is given by

$$P(\mathcal{N},\phi) = -\frac{\pi}{2\mu^2}\vartheta_2'\left(\frac{\pi}{2}x, e^{-\frac{\pi^2}{\mu^2}\mathcal{N}}\right),\,$$

For $v = v_0$, we can solve for χ_N exactly, and even perform the inverse Fourier transform analytically.

The PDF in this limit is given by

$$P(\mathcal{N},\phi) = -\frac{\pi}{2\mu^2}\vartheta_2'\left(\frac{\pi}{2}x, e^{-\frac{\pi^2}{\mu^2}\mathcal{N}}\right),\,$$

where

$$\mu^2 = \frac{\Delta \phi_{\rm well}^2}{v_0 M_{\rm Pl}^2}\,, \qquad x = \frac{\phi - \phi_{\rm end}}{\Delta \phi_{\rm well}}\,,$$

and ϑ_2 is the second elliptic theta function.

Figure 4: The PDF we obtain for a flat potential.

For the flat potential, we can find the mass fraction β analytically.

For the flat potential, we can find the mass fraction β analytically.

The expression we find depends on ϕ , μ and ζ_c .

Figure 5: The mass fraction β is plotted as a function of μ , with $\zeta_c = 1$.

- The stochastic- δN formalism is needed to analyse curvature perturbations and PBH formation.
- We developed a characteristic function formalism to calculate the PDF of large fluctuations.
 - Taking a classical limit $v \ll 1$ allows us to recover the classical results, and provide a first NG correction.
- In the stochastic limit we derived a new constraint on μ (height of well vs width of well).

- Recent PBH models (Garcia-Bellido et al, 2017) exhibit slow-roll violation, i.e. a phase of ultra slow-roll. Formalism needs to be checked here.
- Study higher-order corrections to the tail of the Gaussian, even in the classical case
- Extend the formalism to include multi-field inflation.