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@ Introduction to stochastic-dV inflation
@ Characteristic function formalism
@ Application to primordial black holes

@ Summary
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Inflation

Inflation is a period of accelerated expansion of Universe.

Cosmological inflation is needed to solve
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Inflation

Inflation is a period of accelerated expansion of Universe.

Cosmological inflation is needed to solve
@ The flatness problem
@ The horizon problem
@ The monopole problem

@ Seed the large scale structure

The inflaton ¢ has classical equation of motion

b+ 3Ho+V'(p)=0.
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Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum
fluctuations as white noise, £.
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Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum
fluctuations as white noise, £.

Then ¢ is described by a Langevin equation
do __V
dN ~ 3H?

where (¢ (N)) =0and ((N)E(N')) =6 (N —N'), k < aH and
N = [ Hdt.

H
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Inflaton evolves under Langevin equation until ¢ reaches ¢eng
where inflation ends.

L

v

¢end ¢* ¢UV 25

Figure 1: A reflective wall is added at ¢, to prevent the field from
exploring arbitrarily large values.
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Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ( is
¢(t,x) = N(t,x) — No(t) = 0N,

where N is the local number of e-folds of inflation, and Ny is the
amount of expansion in an unperturbed universe.
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Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ( is
C(t,x) = N(t,x) — No(t) =N,

where N is the local number of e-folds of inflation, and Ny is the
amount of expansion in an unperturbed universe.

. . . ._._ No
Figure 2: Ny is at a zero curvature surface, final slice is constant density.
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Stochastic-6 N Formalism _

The identification of { and N defines the § N formalism.
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Stochastic-0 N Formalism

The identification of ¢ and J N defines the § N formalism.

The stochastic formalism treats the number of e-folds IV as a
random variable, denoted N

This reduces calculating curvature perturbations to calculating
statistics of NV realised under Langevin equation

dé Vi H
av =z Tt )
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Characteristic Function Formalism

We want to know about the moments of A/, and set
fn(@) = (N™(¢)). Characteristic function xx (¢, ¢) is

X (t, @) = <6itN(¢)>

n=0 :

Chris Pattison (ICG, Portsmouth) christopher.pattison@port.ac.uk



Characteristic Function Formalism

We want to know about the moments of A/, and set
fn(@) = (N™(¢)). Characteristic function xx (¢, ¢) is

X (t, @) = <€iw(¢)>

n=0 :

XA is related to the PDF P(N, ¢) by

P(ON.6) = o [ IOy (1.6) .
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For PBHs, we need the full PDF, so all the moments.
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For PBHs, we need the full PDF, so all the moments.

Characteristic function satisfies the PDE

9?2 v 0

it
W—ﬁ%‘f‘m v (t @) =0.
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For PBHs, we need the full PDF, so all the moments.

Characteristic function satisfies the PDE
9?2 v 0 N it
0% v20¢  vMZ

Inverse Fourier transforming this gives the full PDF!

xn(t,¢) =0.
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Simple Example

As an example, we take the potential

v(¢) = vo (AZ1>2 .

The computational program is then

@ solve our ODE for x (¢, ®)
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v(¢) = vo (J\Z1>2 .

The computational program is then

@ solve our ODE for x (¢, ®)

e Fourier transform (numerically!) to find the PDF of d/V,
i.e. of the curvature perturbations.
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Simple Example

As an example, we take the potential

v(¢) = vo (J\Z1>2 .

The computational program is then

@ solve our ODE for xas(t, ¢)
e Fourier transform (numerically!) to find the PDF of d/V,
i.e. of the curvature perturbations.

In this case, we can solve everything analytically!
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Figure 3: Plot of the PDF of A/ against \V, for the potential
2
v(8) =vo (325 -
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Application to Primordial Black Holes (PBHs)

If ¢ > (., collapse to form PBHs

The number of PBHs produced is then calculated from the
probability distribution P(dNV, ¢) of these large perturbations using

B8IM ()] ZQ/COOP((SN,qb)d(SJ\/.
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Application to Primordial Black Holes (PBHs)

If ¢ > (., collapse to form PBHs

The number of PBHs produced is then calculated from the
probability distribution P(dNV, ¢) of these large perturbations using

B8IM ()] ZQ/COOP((SN,qb)déJ\/.

This gives the mass fraction of the universe contained in PBHs
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Gaussian Example

It is typically assumed ¢ has a Gaussian distribution.

<
oW
s =2 Pedc
/
0 ¢,

¢
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Stochastic Limit

Inflationary models that produce ¢ > (. can be approximated by a
flat potential at the end of inflation, so v ~ vg.

4

v

Qbend ¢end + A¢Well gb
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For v = vy, we can solve for xar exactly, and even perform the
inverse Fourier transform analytically.
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For v = vy, we can solve for xar exactly, and even perform the
inverse Fourier transform analytically.

The PDF in this limit is given by

71_2
P(N7 ¢) = 2%;219/2 (;rxve_ﬂ/v> )
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For v = vy, we can solve for xar exactly, and even perform the
inverse Fourier transform analytically.

The PDF in this limit is given by
T T TN
P(N7¢):_2Iugq9/2<2wve u >7

where )
2 _ Agbwell _ ¢ - ¢end

- ’ T=—"",
U()Mgl A(stell

and v, is the second elliptic theta function.
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Figure 4: The PDF we obtain for a flat potential.
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For the flat potential, we can find the mass fraction 8 analytically.
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Mass fraction

For the flat potential, we can find the mass fraction 5 analytically.

The expression we find depends on ¢, p and (.
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Figure 5: The mass fraction g is plotted as a function of u, with (. = 1.
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Summary

@ The stochastic-0 /N formalism is needed to analyse curvature
perturbations and PBH formation.

@ We developed a characteristic function formalism to calculate
the PDF of large fluctuations.

e Taking a classical limit v < 1 allows us to recover the classical
results, and provide a first NG correction.

@ In the stochastic limit we derived a new constraint on p
(height of well vs width of well).

Chris Pattison (ICG, Portsmouth) christopher.pattison@port.ac.uk



Future Work

@ Recent PBH models (Garcia-Bellido et al, 2017) exhibit
slow-roll violation, i.e. a phase of ultra slow-roll. Formalism
needs to be checked here.

@ Study higher-order corrections to the tail of the Gaussian,
even in the classical case

@ Extend the formalism to include multi-field inflation.
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