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* Why WIMPs?

- DM at the International Linear
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- Minimal models
+ Mass determination
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Why WIMPs?

CMB anisotropies from WMAP,
PLANCK surveys — Q,h?=0.1186

Relic density explainable by weak scale
interactions

0 1 m2
X ~N — Y —
(ov) gy
T ey WIMP miracle:
Jungman et al hep-ph/8506380 My ~ 100GeV Ix ~ Guw — QX ~ 0.1
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< DM annihilation in halo, core of the Earth and Sun —
photons, Anti-protons, positrons, Neutrinos
* Neutrino telescopes: Amanda, Icecube, Antares
inderect

SM

DM
\ / - Scattering off nuclei: DM
Q direct Direct Detection (DD)
/ \ - DD experiments:
SM DM
>

LUX,XENON

collider
- LEP sets bounds on electroweak fermions < 100GeV

- LHC signatures: mono-jet, mono-photon, mono-Z, mono
Higgs, VBF+MET, soft leptons+MET, ...
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DM at ILC

International Linear Collider

Future ete~ collider starting at 500TeV, 500 /6! after run 1
(4 years)

LEP: 200pb~—! at upto 200GeV — o ~ 10fb, expect 2
events

ILC: — ~ 5000 signal events
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We study the ILCs ability to measure DM and it’s properties. We
will consider scalar and fermionic dark matter, as defined by:
+ D has mass Mp and spin sp = 0 or 1/2
- there is new conserved quantum number, which we call
D-parity. SM particles are D-even, while the D is D-odd -
stablising lightest D-odd particle
- other D-odd particles exist: a charged D* and a neutral
D», with the same spin sp and with masses
M., Mp, > Mp
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Can produce pair of D via processes e e~ — D™D~ or
ete™ — DyDy with D* — W*D, Dy — ZD.

W#,Z may then decay to dijet or leptonically

Could measure M. ,Mp from edges of dijet distribution, but
jet energy measurements have lots of uncertainty

Instead use singular points of lepton energy distribution
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« Total ILC annihilation at /s > 200GeV is ~ 100y where
op=o0lete —y—putp )= %L;, annually: Log ~ 3-10°
< ete” — DT D™ can represent a significant fraction

+ taking into account only photon and Z annihilation
diagrams. Neglecting v — Z mixing:

2
By [1 + PhEe + Tzﬂi] (SD = 1) ;
i 2 (1)

B3 E +ry COS2(291/[/)] (sp =0),

Umin(sD) ]

1754 0.124/LM

here ry; = = ,
27 2sin(20w)* (1 - M2/s)2  (1— MZ/s)?

factor up; < 1 is expressed via parameters of possible

mixing, By = (/1 —4M2 /s
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M, = 150 GeV.
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Single lepton energy distribution

| ete— — DYD— — DDW*W~ — DDqglv

Onshell W energy disribution
will have edges:

=74 (B (M) %8405 (Mw)).

Will lead to kinks in lepton
energy dist ¢, =

Eon—1/ (Bon)?— M3,

2 b

12
My,
de,.

+
€ =
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All muon energies lie within the interval determined by the
highest value of W energy:

M2 By + 1/ (Eon)? — M,
f2exe =W, = > 2)
4e 2

From €™, ¢, and condition of positive real mass, can reconstruct
Mp, M.
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To explore further, we consider gauge-invariant renormalisable
models with these feature.

IHDM: new SU(2) higgs doublet which does not acquire veyv, or
couple to fermions. D-parity realised as Z, symmetry

L= LM + Ly (b5, 65) + (DusDugs + DushDutdp) /2= V
V = 1 [miy(@hes) +mia(ehon)+ ﬁ(¢2¢s>2+ﬁ(¢%¢p)2+

+ 23(65605) (@001 M6l 6p)(8hos) + 32 [(656p) +(8hes)]
Leads to phenomenologically interesting parameters:

{Mp, Mp,, My, 345 = A3 + A\s + A5} Where \345 governs
higgs-DM vertex
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For anomaly-free fermionic DM, introduce SU(2) weak doublet
of vector-like (non-chiral) Dirac fermions: 1 = (x T, x"), along
with D-odd singlet x?, which mixes with x°.

Lyrpm = Lsn + Py — myh) — myoxIxe — Yor@x?  (3)

We diagonalise to find expressions for lagrangian parameters in
terms of physical parameters:
{Mp, Mp,, M.}, which also parametrise mixings
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Effects from finite-widths, non-resonant diagrams and

ISR+beamstrahlung:

Muon Energy Spectrum fore*e~ -»D*Dyu~V: Mp= =150GeV
—— Analytical simplified case
2-3x1-2, 7.20fb
1 2-4, =7.60fb
[ 24, ISR+B,

°
S
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Muon Energy Spectrum fore*e~ -»D*Dyu~V: Mp= =150GeV
—— Analytical simplified case
2-3x1-2, 0=46.73f
24, 0=146.56fb
[ 2-4, ISR+B, 0=47.94fb
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dist, Mp4+ = 150 GeV, Mp =50 dist, Mp+ = 150 GeV, Mp = 50
GeV. GeV.
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Normalised No. Events vs Energy of Muon, Mpy =150 GeV

D
=
Ny
S
=
=
~
(8]
hS
X
o
2
=

Normalized No. Events :

D.Locke DMatILC



Motivation
DM at ILC
Conclusion

+ Lets consider decoupled D- scenario, where background is
mostly SM, at /s = 500GeV, £ = 500/b~1.



Motivation
DM at ILC
Conclusion

+ Lets consider decoupled D- scenario, where background is
mostly SM, at /s = 500GeV, £ = 500/b~1.

+ Consider M, = 170GeV, Mp = 70GeV
(MDP=500,)345 = 0)



Motivation
DM at ILC
Conclusion

+ Lets consider decoupled D- scenario, where background is
mostly SM, at /s = 500GeV, £ = 500/b~1.

+ Consider M, = 170GeV, Mp = 70GeV
(MDP=500,)345 = 0)

< main contribution to background is eTe™ — WTIW ~, with
subsequent decay to dijet+pu, v



Motivation
DM at ILC
Conclusion

+ Lets consider decoupled D- scenario, where background is
mostly SM, at /s = 500GeV, £ = 500/b~1.

+ Consider M, = 170GeV, Mp = 70GeV
(MDP=500,)345 = 0)

< main contribution to background is eTe™ — WTIW ~, with
subsequent decay to dijet+pu, v

c o(ete” — j,4,u,v) = 657fb (20 diagrams, no NWA)



Motivation
DM at ILC
Conclusion

+ Lets consider decoupled D- scenario, where background is
mostly SM, at /s = 500GeV, £ = 500/b~1.

+ Consider M, = 170GeV, Mp = 70GeV
(MDP=500,)345 = 0)

< main contribution to background is eTe™ — WTIW ~, with
subsequent decay to dijet+pu, v

c o(ete” — j,4,u,v) = 657fb (20 diagrams, no NWA)
colete” = WTW™ — j,j,u,v) = 635fb



Motivation
DM at ILC
Conclusion

+ Lets consider decoupled D- scenario, where background is
mostly SM, at /s = 500GeV, £ = 500/b~1.

+ Consider M, = 170GeV, Mp = 70GeV
(MDP=500,)345 = 0)

< main contribution to background is eTe™ — WTIW ~, with
subsequent decay to dijet+pu, v

c o(ete” — j,4,u,v) = 657fb (20 diagrams, no NWA)
colete” = WTW™ — j,j,u,v) = 635fb
« oPM(etem 5 WHW ™ = 4,4, 1, v) = 3.42fb



Motivation
DM at ILC
Conclusion

+ Lets consider decoupled D- scenario, where background is
mostly SM, at /s = 500GeV, £ = 500/b~1.

+ Consider M, = 170GeV, Mp = 70GeV
(MDP=500,)345 = 0)

< main contribution to background is eTe™ — WTIW ~, with
subsequent decay to dijet+pu, v

c o(ete” — j,4,u,v) = 657fb (20 diagrams, no NWA)
colete” = WTW™ — j,j,u,v) = 635fb

« oPM(etem 5 WHW ™ = 4,4, 1, v) = 3.42fb

« ofPM(ete™ » WHW ™ — j,j, u,v) = 34.98fb



Motivation
DM at ILC
Conclusion

+ Lets consider decoupled D- scenario, where background is
mostly SM, at /s = 500GeV, £ = 500/b~1.

+ Consider M, = 170GeV, Mp = 70GeV
(MDP=500,)345 = 0)

< main contribution to background is eTe™ — WTIW ~, with
subsequent decay to dijet+pu, v

c o(ete” — j,4,u,v) = 657fb (20 diagrams, no NWA)
colete” = WTW™ — j,j,u,v) = 635fb

« oPM(etem 5 WHW ™ = 4,4, 1, v) = 3.42fb

« ofPM(ete™ » WHW ™ — j,j, u,v) = 34.98fb



Motivation
DM at ILC
Conclusion

ete™ = DD(W — w)(W — qq): dijet + p + missing
with energy of each dijet or lepton < \/75 with large M ET and
large M;ss-

M2, = ( (500,0,0,0) me> (4)

Vs

+ If we knew initial energies, could remove all SM background



Motivation
DM at ILC
Conclusion

ete™ = DD(W — w)(W — qq): dijet + p + missing
with energy of each dijet or lepton < \/75 with large M ET and
large M;ss-

M2, = ( (500,0,0,0) me> (4)

Vs

+ If we knew initial energies, could remove all SM background

+ ISR and beamstrahlung prevents this cut from rejecting all
backgrounds.



Motivation
DM at ILC
Conclusion

ete™ = DD(W — w)(W — qq): dijet + p + missing
with energy of each dijet or lepton < \/75 with large M ET and
large M;ss-

M2, = ( (500,0,0,0) me> (4)

Vs

+ If we knew initial energies, could remove all SM background
+ ISR and beamstrahlung prevents this cut from rejecting all
backgrounds.
Multivariate cut in this plane is powerful, e.g:
a) Pl iss < 3% Myiss — 600; b) PT,;s > —M,;s + 300.
signal efficiency: 0.86134
background rejection: 0.9847



DM at ILC

Signal vs background

SM(SDM) for e * e ~ =}, j, 4, v(+D, D) at 1000fb~!
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Signal vs background

‘N events at parton level

200 300
Mmiss
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For IHDM we can find points for our signature
[arXiv:1612.00511]

For VFDM, not so good: to suppress gy x"x"Z and avoid
XENONA1T bounds, require D, — DT < 1GeV (mass gap
controls mixing).

This leads to small DM annihilation rates — overclose the
universe.

Can suppress Qh? by introducing coannihilation partner
interacting via new yukawa coupling.

Possibilities: D-odd scalar or fermion, electroweak singlet
or doublet. For minimality, choose singlet - still no viable
models with this signature.

Best solution appears to be Majorana DM, which does not
contain vector couplings, so DD constraints avoided

without mixings.
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Coupling odd scalar singlet to muon doublet:

Qh?<0.119 0.09 <Qh?<0.119 Muon(g - 2)

Density an?
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There is a possibility to measure mass and spin of DM at
ILC, provided weakly interacting DM exists

Work in progress: detector level analysis

We explored potential minimal consistent models for
fermion dark matter, which may produce such signals

Work in progress: Majorana dark matter

Future work: detector level analysis for spin discrimination,
benchmark planes
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