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Conclusion

Despite the many successes of the
SM, it lacks a candidate for DM - with
LHC yet to find candidate, one of the
main goals of future colliders is to
explore hidden sector. Here, I’ll
discuss:

• Evidence for DM
• Why WIMPs?
• DM at the International Linear

Collider (ILC)
• Minimal models
• Mass determination
• Spin determination
• Analysis

D.Locke DM at ILC 2/25



Motivation
DM at ILC

Conclusion

Despite the many successes of the
SM, it lacks a candidate for DM - with
LHC yet to find candidate, one of the
main goals of future colliders is to
explore hidden sector. Here, I’ll
discuss:

• Evidence for DM

• Why WIMPs?
• DM at the International Linear

Collider (ILC)
• Minimal models
• Mass determination
• Spin determination
• Analysis

D.Locke DM at ILC 2/25



Motivation
DM at ILC

Conclusion

Despite the many successes of the
SM, it lacks a candidate for DM - with
LHC yet to find candidate, one of the
main goals of future colliders is to
explore hidden sector. Here, I’ll
discuss:

• Evidence for DM
• Why WIMPs?

• DM at the International Linear
Collider (ILC)

• Minimal models
• Mass determination
• Spin determination
• Analysis

D.Locke DM at ILC 2/25



Motivation
DM at ILC

Conclusion

Despite the many successes of the
SM, it lacks a candidate for DM - with
LHC yet to find candidate, one of the
main goals of future colliders is to
explore hidden sector. Here, I’ll
discuss:

• Evidence for DM
• Why WIMPs?
• DM at the International Linear

Collider (ILC)

• Minimal models
• Mass determination
• Spin determination
• Analysis

D.Locke DM at ILC 2/25



Motivation
DM at ILC

Conclusion

Despite the many successes of the
SM, it lacks a candidate for DM - with
LHC yet to find candidate, one of the
main goals of future colliders is to
explore hidden sector. Here, I’ll
discuss:

• Evidence for DM
• Why WIMPs?
• DM at the International Linear

Collider (ILC)
• Minimal models
• Mass determination

• Spin determination
• Analysis

D.Locke DM at ILC 2/25



Motivation
DM at ILC

Conclusion

Despite the many successes of the
SM, it lacks a candidate for DM - with
LHC yet to find candidate, one of the
main goals of future colliders is to
explore hidden sector. Here, I’ll
discuss:

• Evidence for DM
• Why WIMPs?
• DM at the International Linear

Collider (ILC)
• Minimal models
• Mass determination
• Spin determination

• Analysis

D.Locke DM at ILC 2/25



Motivation
DM at ILC

Conclusion

Despite the many successes of the
SM, it lacks a candidate for DM - with
LHC yet to find candidate, one of the
main goals of future colliders is to
explore hidden sector. Here, I’ll
discuss:

• Evidence for DM
• Why WIMPs?
• DM at the International Linear

Collider (ILC)
• Minimal models
• Mass determination
• Spin determination
• Analysis

D.Locke DM at ILC 2/25



Motivation
DM at ILC

Conclusion

Evidence for DM

• Galaxy rotation curves disagree
with those from luminous mass

• ΛCDM applied to CMB - large
scale structure requires universe
∼28.6% DM

• Gravitaional lensing
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Why WIMPs?

• MACHOs disfavoured from microlensing.
EROS-2: <8% DM halo mass
[arXiv:astro-ph/0607207]

• Massive - can’t be "hot" (mass > ∼ 1keV ) for
structure formation to occur

• Many candidates: Neutrinos, sterile neutrinos,
Axions, SUSY: neutralino, sneutrino, gravitino,
axino. Little higgs, inert higgs doublet,
KK-states, WIMPzillas, other exotics

• Could be made of combinations of these, with
multiple supersymmetries or other stability
protecting partities.
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Why WIMPs?

• CMB anisotropies from WMAP,
PLANCK surveys→ Ωχh

2=0.1186

• Relic density explainable by weak scale
interactions

Ωχ ∼
1

〈σv〉
∼
m2
χ

g4χ

• WIMP miracle:
mχ ∼ 100GeV gχ ∼ gw → Ωχ ∼ 0.1
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Experiments

• DM annihilation in halo, core of the Earth and Sun→
photons, Anti-protons, positrons, Neutrinos

• Neutrino telescopes: Amanda, Icecube, Antares

• Scattering off nuclei: DM
Direct Detection (DD)

• DD experiments:
LUX,XENON

• LEP sets bounds on electroweak fermions < 100GeV
• LHC signatures: mono-jet, mono-photon, mono-Z, mono

Higgs, VBF+MET, soft leptons+MET, ...

D.Locke DM at ILC 6/25
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International Linear Collider

• Future e+e− collider starting at 500TeV, 500fb−1 after run 1
(4 years)

• LEP: 200pb−1 at upto 200GeV→ σ ≈ 10fb, expect 2
events
ILC:→ ∼ 5000 signal events
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Conventions

We study the ILCs ability to measure DM and it’s properties. We
will consider scalar and fermionic dark matter, as defined by:

• D has mass MD and spin sD = 0 or 1/2

• there is new conserved quantum number, which we call
D-parity. SM particles are D-even, while the D is D-odd -
stablising lightest D-odd particle

• other D-odd particles exist: a charged D± and a neutral
D2, with the same spin sD and with masses
M+, MD2 > MD
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• Can produce pair of D via processes e+e− → D+D− or
e+e− → D2D2 with D± →W±D, D2 → ZD.

• W±,Z may then decay to dijet or leptonically

• Could measure M+,MD from edges of dijet distribution, but
jet energy measurements have lots of uncertainty

• Instead use singular points of lepton energy distribution
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• Total ILC annihilation at
√
s > 200GeV is ∼ 10σ0 where

σ0 = σ(e+ e− → γ → µ+µ−) = 4π2

3s , annually: Lσ0 ∼ 3 · 105

• e+e− → D+D− can represent a significant fraction
• taking into account only photon and Z annihilation

diagrams. Neglecting γ − Z mixing:

σmin(sD) =σ0


β+

[
1 +

2M2
+

s
+ rZβ

2
+

] (
sD =

1

2

)
,

β3+

[
1

4
+ rZ cos2(2θW )

]
(sD = 0),

(1)

here rZ =
µM

(2 sin(2θW ))4 (1−M2
Z/s)

2
=

0.124µM
(1−M2

Z/s)
2
,

factor µM ≤ 1 is expressed via parameters of possible
mixing, β+ =

√
1− 4M2

+/s
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Figure: M+ = 150 GeV.
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Single lepton energy distribution

e+e− → D+D− → DDW+W− → DDqq̄`ν

Onshell W energy disribution
will have edges:

E±on=γ+(Erest(MW )±β+prestW (MW )).

Will lead to kinks in lepton
energy dist ε−k =

E−
on−

√
(E−

on)2−M2
W

2 , ε+k =
M2

W

4ε−k

D.Locke DM at ILC 12/25
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Single lepton energy distribution

All muon energies lie within the interval determined by the
highest value of W energy:

ε+ > ε > ε− ≡
M2
W

4ε+
, ε+ =

E+
on +

√
(E+

on)2 −M2
W

2
(2)

From ε+, ε−k and condition of positive real mass, can reconstruct
MD, M+.

D.Locke DM at ILC 13/25
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Minimal Models

To explore further, we consider gauge-invariant renormalisable
models with these feature.
IHDM: new SU(2) higgs doublet which does not acquire vev, or
couple to fermions. D-parity realised as Z2 symmetry

L = LSMgf + LY (ψf , φS) +
(
Dµφ†SDµφS +Dµφ†DDµφD

)
/2− V

V = −1

2

[
m2

11(φ
†
SφS)+m2

22(φ
†
DφD)

]
+
λ1
2

(φ†SφS)2+
λ2
2

(φ†DφD)2+

+ λ3(φ
†
SφS)(φ†DφD)+λ4(φ

†
SφD)(φ†DφS) +

λ5
2

[
(φ†SφD)2+(φ†DφS)2

]
Leads to phenomenologically interesting parameters:
{MD,MD2 ,M+, λ345 = λ3 + λ4 + λ5} where λ345 governs
higgs-DM vertex

D.Locke DM at ILC 14/25
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VFDM

For anomaly-free fermionic DM, introduce SU(2) weak doublet
of vector-like (non-chiral) Dirac fermions: ψ =

(
χ+, χ0

)
, along

with D-odd singlet χ0
s, which mixes with χ0.

LV FDM = LSM + iψ̄ /Dψ −mψψ̄ψ −mχ0
s
χ̄0
sχ

0
s − Y0ψ̄Φχ0

s (3)

We diagonalise to find expressions for lagrangian parameters in
terms of physical parameters:
{MD,MD2 ,M+}, which also parametrise mixings
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Effects from finite-widths, non-resonant diagrams and
ISR+beamstrahlung:

0 25 50 75 100 125 150 175 200 225
E( )

0.000
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0.004
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0.010

1
d

/d
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)(
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Muon Energy Spectrum for e + e D + D1 : MD ± = 150GeV

Analytical simplified case
2 3 × 1 2, = 7.20fb
2 4, = 7.60fb
2 4, ISR + B, = 7.20fb

Figure: Scalar DM, muon energy
dist, MD± = 150 GeV, MD = 50
GeV.
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Figure: Fermion DM, muon energy
dist, MD± = 150 GeV, MD = 50
GeV.
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Figure: muon energy dist, MD± = 150 GeV, MD = 50 GeV.

D.Locke DM at ILC 17/25



Motivation
DM at ILC

Conclusion

Signal vs background

• Lets consider decoupled D2 scenario, where background is
mostly SM, at

√
s = 500GeV , L = 500fb−1.

• Consider M+ = 170GeV , MD = 70GeV
(MDP=500,λ345 = 0)

• main contribution to background is e+e− →W+W−, with
subsequent decay to dijet+µ, ν

• σ(e+e− → j, j, µ, ν) = 657fb (20 diagrams, no NWA)
• σ(e+e− →W+W− → j, j, µ, ν) = 635fb

• σSDM (e+e− →W+W− → j, j, µ, ν) = 3.42fb

• σFDM (e+e− →W+W− → j, j, µ, ν) = 34.98fb

D.Locke DM at ILC 18/25
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(MDP=500,λ345 = 0)

• main contribution to background is e+e− →W+W−, with
subsequent decay to dijet+µ, ν

• σ(e+e− → j, j, µ, ν) = 657fb (20 diagrams, no NWA)
• σ(e+e− →W+W− → j, j, µ, ν) = 635fb

• σSDM (e+e− →W+W− → j, j, µ, ν) = 3.42fb

• σFDM (e+e− →W+W− → j, j, µ, ν) = 34.98fb
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Signal vs background

e+e− → DD(W → `ν)(W → qq̄): dijet + µ + missing
with energy of each dijet or lepton <

√
s
2 , with large MET and

large Mmiss.

M2
miss =

(
(500, 0, 0, 0)−

∑
vis

pvis

)2

(4)

• If we knew initial energies, could remove all SM background

• ISR and beamstrahlung prevents this cut from rejecting all
backgrounds.

Multivariate cut in this plane is powerful, e.g:
a) PTmiss < 3 ∗Mmiss − 600; b) PTvis > −Mvis + 300.
signal efficiency: 0.86134
background rejection: 0.9847
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Signal vs background
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Signal vs background
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Parameter space

• For IHDM we can find points for our signature
[arXiv:1612.00511]

• For VFDM, not so good: to suppress gWχ0χ0Z and avoid
XENON1T bounds, require D2 −D+ < 1GeV (mass gap
controls mixing).

• This leads to small DM annihilation rates→ overclose the
universe.

• Can suppress Ωh2 by introducing coannihilation partner
interacting via new yukawa coupling.

• Possibilities: D-odd scalar or fermion, electroweak singlet
or doublet. For minimality, choose singlet - still no viable
models with this signature.

• Best solution appears to be Majorana DM, which does not
contain vector couplings, so DD constraints avoided
without mixings.
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Parameter space

Coupling odd scalar singlet to muon doublet:
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Conclusion and outlook

• There is a possibility to measure mass and spin of DM at
ILC, provided weakly interacting DM exists

• Work in progress: detector level analysis
• We explored potential minimal consistent models for

fermion dark matter, which may produce such signals
• Work in progress: Majorana dark matter
• Future work: detector level analysis for spin discrimination,

benchmark planes
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I made too many slides
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