Results obtained so far

- charge analysis -

Christoph Alt (ETHZ) Philippe Cotte (CEA Saclay) Andrea Scarpelli (CNRS/APC) Robert Sulej (FNAL, NCBJ) Dorota Stefan (CERN, NCBJ) Laura Zambelli (CNRS / LAPP)

Drift Field, nominal at 0.5 kV/cm → Achieved [0.3 ~ 0.7] kV/cm

Extraction Field, nominal at 2 kV/cm in LAr → Achieved with a maximum voltage applied of -5 kV

Amplification Field, nominal at 30 kV/cm

→ Limited by the grid, maximum field achieved of 29 kV/cm

Induction Field, nominal at 5 kV/cm

ightarrow Limited by the grid, maximum field achieved of 2 kV/cm

→ Total of 340 000 triggers taken in more than 40 different HV configurations

Drift field and different trigger conditions are not shown on this plot

Conventions

View 0 is I m long reading 3m strips with 320 channels

View I

is 3m long reading 1m strips with 960 channels

I7 problematic channels out of I280
I2 LEMs [panels of 50 cm²] numbering shown

Noise Filtering for low gain runs

Run 840

Using run 840, with this HV settings :

- PMT trigger
- ~10h long, ~40 ktriggers
- Drift field at 500 V/cm
- Extraction field at 1.85 kV/cm in LAr
- Amplification field of
 - 28 kV/cm in central LEMs
 - 24 kV/cm in corner LEMs
- Induction field at 1.5 kV/cm

1	2	5	6	9	10
3	4	7	8	11	12

LEMs 1,3,10, 12 at lower field

Gain Uniformity

LEMs 1,3,10, 12 at lower field

All reconstructed 3D tracks with a length of 50 cm, starting at the anode or ending at the cathode [6 878 track selected in 30 736 triggers]

Each entry is the mean of deposited charge for each channel.

Response of the two views

Hit charge distributions are fitted with a landau convoluted with a gaussian

Gain Uniformity

LEMs 1,3,10, 12 at lower field

Quite uniform response across all LEMs

Estimation of the purity

Using the same run, through going tracks underneath central LEMs are selected

Hit charge as a function of the drift length :

View 1

Estimation of the purity

The 2D distributions are sliced in 10 bins of 10 cm drift in each view.

The distributions are fitted with a landau convoluted with a gaussian.

Estimation of the purity

The preliminary estimation of the electron lifetime highlights a purity at the level of 10⁻² ppb

Preliminary look at the LEM field scan

Charge collected in view 0 for different LEM field

Using runs taken at high extraction field [extraction efficiency being at 90% or higher] and at the same induction field of 1 kV/cm.

The relative increase of the mean collected charge as a function of the amplification field is visible.

- Improvement on hit and track finding algorithms
- Realistic simulations of the $3 \times 1 \times 1$ detector, in particular to study the drift field distortions and space charge effect
- Simulation of the field lines in the gaseous phase, in particular understand the effect of the induction field
- Ongoing studies of effective gains achieved, LEM field scan, extraction field scan

Average hit amplitude vs. channel in view 0 (run 840)

Average hit amplitude vs. channel in view 0

Hit finding efficiency vs. channel in view 0

View 0: hit finding efficiency vs. effective gain