

# **ArgonCube Detector Geometry**Simulation Status

Jose Palomino, Guang Yang, Clark McGrew, Chang Kee Yung.

2017/10/16

# ArgonCube Detector Geometry

- We have defined ArgonCube Detector Geometry using DUNENDGGD.
- DUNENDGGD is based on GeGeDe\* (Brett Viren BNL)
  - ★ GDML output that's compatible with both GEANT4 and ROOT
  - ★ Define geometries to evaluate the feasibilities of a wide range of possible detector configurations.
  - ★ Flexibly and quickly define geometry configurations.

# General Geometry Description

- \* "GeGeDe is a software system to generate a description of a constructive solid geometry as represented in GDML files. Specifically as used by Geant4 or ROOT applications. It is implemented as a pure Python module"\*.
- The core of GeGeDe relies on Pint to enforce the consistent use of units.
- GeGeDe package was developed by Brett Viren, Brookhaven National Laboratory.



- \* All objects features can be defined in cfg files by users.
- \* It is generic structure, that each higher level just calls all sub-builders in lower level

# DUNENDGGD can be used as input to...



# ArgonCube Module





**DUNENDGGD**:

Active LAr

Dead LAr

Dear GAr

Field Cage (Copper)

Pump

Pixel Panel

Cathode

# ArgonCube Detector





#### 15 Modules

3 Modules: Transversal Beam Direction:

5 Modules: Beam Direction

### ArgonCube Structure



- Seems to be composed by two frames
- It is important to have realistic geometry for muon acceptance
- ♣No trivial geometry shapes.
- The drawing is not scale

# ArgonCube Structure



# Two planes to create 1 wall



5 walls to create the Structure



# ArgonCube: Status



# Backup Slides





#### EDEP-SIM

- > Experiment independent Energy DEPosition SIMulation
  - → Derived from the T2K near detector simulation
  - → Provides the bookkeeping and infrastructure needed to track truth information and energy deposition.
    - > In T2K, the output then drives a response/digitization simulation.
  - → Can be called as a library, or to used to directly write a ROOT tree
  - → Being used to simulate/debug the DUNE-ND-GGD geometries
- Detailed simulation
  - → Electric and magnetic fields (from GDML)
  - → Can simulate full beam structure, upstream and magnet interactions.
  - → Detailed model for LAr recombination using NEST<sup>†</sup>
    - > Handles both ionization and optical photon production
    - > Validated by CAPTAIN collaboration against published ICARUS ionization measurements
- Major Features
  - → Minimal dependencies (only ROOT and GEANT4 via cmake)
  - → ROOT tree format designed to make analysis easy (more in some other meeting).
  - → Provides a simple ROOT (Eve) based event display
  - → Fast (can simulate 10's of GeV per second)
  - → Reads interactions from GENIE, NEUT, NUANCE (easily expanded)
  - → Scalable: Users can start with simple geometry, but edep-sim already handles the complexity needed for a running experiment.
  - → Mature code. Except for cosmetic changes, it's been in used for a long time and has been thoroughly exercised.
  - → Produces geometry that's ready for GENIE

#### Procedure



### Operation with Booleans



The boolean shape operations, always keep its center respect to the first shape



I must create a empty bigger box as first shape in order to apply shape operations