Background Studies - FCC-ee MDI Progress with MDISIM Simulations without pencil beam

Marian Lückhof

MDI Study Group Meeting September 22, 2017

Short recap: Possible Collimator Locations

Figure: Possible collimator positions upstream of b2.

- ► Peak E_c slightly below 100 keV (new lattice; update)
- ▶ Protection of IP challenging → SR in narrow cones
- ► further details: study group meeting in August

b1 and tracking: Primaries and SR fans

Figure: Part of the primary track and SR fans.

Origin of SR photons: bends

Origin of SR photons: bends

Hits of SR photons at certain locations along z

Origin of SR photons: bends

Hits of SR photons at certain locations along z

What about Quadrupoles?

Currently established four shapes:

- pencil beam Gaussx, Gaussy~0
- 2. Gaussian Gaussx, Gaussy~1
- 3. flat Gaussx, Gaussy~N
- 4. ring Gaussx, Gaussy~-N
- \rightarrow N specifies how many σ in phase space

Currently established four shapes:

- pencil beam Gaussx, Gaussy~0
- 2. Gaussian Gaussx, Gaussy~1
- 3. flat Gaussx, Gaussy~N
- 4. ring Gaussx, Gaussy~-N

Currently established four shapes:

- pencil beam Gaussx, Gaussy~0
- 2. Gaussian Gaussx, Gaussy~1
- 3. flat Gaussx, Gaussy~N
- 4. ring Gaussx, Gaussy~-N
- ightarrow N specifies how many σ in phase space

And the effect? Looking at Origins

And the effect? Looking at Origins

pencil beam vs. Gaussian

And the effect? Looking at Origins

pencil beam vs. Gaussian

pencil beam vs. flat 5

What about particles further out?

What about particles further out?

Putting all particles at 10σ

What about particles further out?

Putting all particles at 10σ

Figure: ring-like shape with N=10

Hits on BP also affected

Comparing default with new spectrum

Hits on BP also affected

Comparing default with new spectrum

Hits caused by pencil beam

Hits on BP also affected

Comparing default with new spectrum

Hits caused by pencil beam

Hits with different beam shape

Outlook: Next steps

- better understand particle distribution
- lacktriangle offset beam w.r.t reference axis $ightarrow \mathrm{MDISIM}$
- study energy spectrum in detail (esp. quads)
- switch to latest optics
- further work on collimators; COLH and COLV?
- estimates at certain points along z

Backup slides

References

