

Nb₃Sn Accelerator Magnet Development in the US

Soren Prestemon

Director US Magnet Development Program Lawrence Berkeley National Laboratory

Outline

- Some history of Nb₃Sn accelerator magnet development in the US
 - DOE Laboratory efforts
 - o NIST
 - University efforts
 - The DOE LHC Accelerator Research Program
- The US Magnet Development Program
 - How we are structured
 - Progress and current status
- Summary

U.S. MAGNET DEVELOPMENT PROGRAM

Many DOE laboratories and Universities have been involved in Nb3Sn accelerator magnet technology development

S. Prestemon, Workshop on Nb3Sn Cable Characterization, CIEMAT, Nov. 16-17, 2017

The DOE labs have been involved in Nb₃Sn technology for more than two decades

- S. A. Gourlay, "High Field Magnet R&D in the USA," IEEE Trans. Appl. Supercond, vol. 14, no. 2, pp. 333–338, Jun. 2004.
- G. Apollinari, S. O. Prestemon, and A. V. Zlobin, "Progress with High-Field Superconducting Magnets for High-Energy Colliders," http://dx.doi.org/10.1146/annurev-nucl-102014-022128, Oct. 2015.
- LBNL started working with Nb₃Sn in the early 1990's
 - D20 Cos-theta configuration; tested in 1997, achieved 13.6T at 1.8K
 - RD2, then RD3b common coil configuration, first proposed by BNL; Achieved 14.5T.
 - HD 1-3 block designs (HD1 16T, HD2 13.74T, HD3 13.4T)
 - CCT 1-4 Canted cosine-theta configuration (CCT4 9.14T)
- FNAL began working with Nb₃Sn in the late 1990'S (E. Barzi and A. V. Zlobin, "15 Years of R&D on high field accelerator magnets at FNAL," NIMs-A, vol. 824, pp. 168–172, Jul. 2016)
 - VLHC design studies
 - HFDA series 1-6: Cosine theta configuration
 - HFDB-03 Common coil configuration
 - MBHSP and MBHDP models: Cosine theta configuration
- BNL did some early work on Nb3Sn dipoles in the 1970's (W.B. Sampson et al., "Nb3Sn Dipole Magnets", IEEE Trans. Magnetics, vol. Mag-15, no. 1, pp. 117-118., Jan. 1979)
 - Restarted working on Nb₃Sn in early 2000'S (R. Gupta et al., "Common coil magnet program at BNL," TAS, vol. 11, no. 1, pp. 2168–2171, Mar. 2001)
 - Common coil dipole DCC017 made using "React & Wind" technology

Early history of Nb₃Sn accelerator magnet technology in the US: Universities

• NIST:

- **o** Long history of materials characterization
- Texas A&M:
 - Significant effort toward stress management in high-field dipoles

Ohio State

- Significant expertise in strand and cable magnetization, instabilities, materials characterization
- Applied Superconductivity Center (U.W.=>FSU)
 - Long history of materials development major leadership in conductor development
 - $\circ~$ Played (and plays...) critical role in development of advanced Nb₃Sn

The LARP program has provided tremendous focus on bringing Nb₃Sn to real implementation for accelerators

• The LHC Accelerator Research Program

- A major focus area at initiation was Nb₃Sn quadrupole development
- Magnet team members: FNAL, LBNL, BNL
- Important understanding of the interdependence of conductor, cable, and magnets

Office of

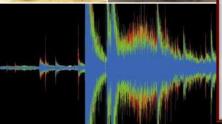
Science

 Example: scale-up to 4m (LQ) highlighted importance of understanding Nb₃Sn conductor dimensional changes

A Proposal
R. Kephart, M.J. Lamm, P. Limon, J. Marriner, T. Sen, J. Strait, A.V. Zlobin Fermi National Accelerator Laboratory
Batavia, IL 60510
P. Cameron, A. Drees, W. Fischer, R. Gupta, M. Harrison, F. Pilat, S. Peggs
Brookhaven National Laboratory
Upton, NY 11973
W. Barletta, J. Byrd, P. Denes, M. Furman, S. Gourlay, A. Ratti, W. Turner
Lawrence Berkeley National Laboratory Berkeley, CA 94720
Derkeley, CA 94720
May 2003

The U.S. LHC Accelerator Research Program:

=> "Handshake" from LARP to HL-LHC AUP currently underway


The US HEP Superconducting Magnet Programs are now integrated into the US Magnet Development Program

The U.S. Magnet Development Program Plan

US Magnet Development Program (MDP) Goals:

GOAL 1:

Explore the performance limits of Nb₃Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

GOAL 2:

Develop and demonstrate an HTS accelerator magnet with a self-field of 5 T or greater compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16 T.

GOAL 3:

Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

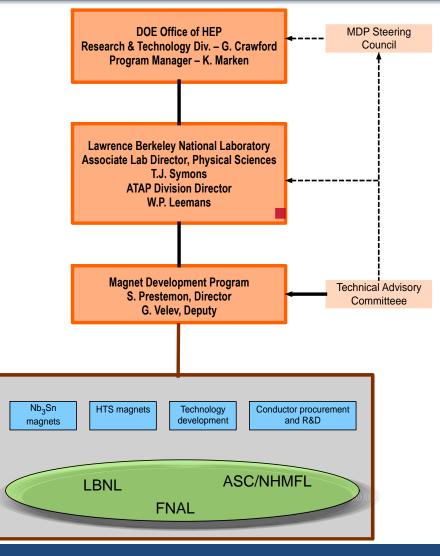
GOAL 4:

Pursue Nb₃Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets. ed U.S. high-field magnet R&D collaboration studies for a very high-energy proton-proton ge improvement in cost-performance.

A program for high-field accelerator magnet development funded by the DOE Office of High Energy Physics

et development plan with appropriate ility of cost-effective accelerator magnets

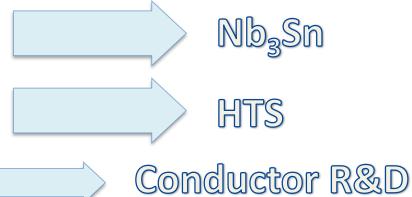
ce


try and manufacturing engineering oth decrease the touch labor and increase on superconducting accelerator magnets.

crease funding for superconducting upport aggressive development of new

The management structure of the MDP is clearly defined and the program is fully functioning

Technical Advisory Committee Andrew Lankford, UC Irvine – *Chair* Davide Tommasini, CERN Akira Yamamoto, KEK Joe Minervini, MIT Giorgio Apollinari, FNAL (LARP/Hi-Lumi) Mark Palmer, BNL

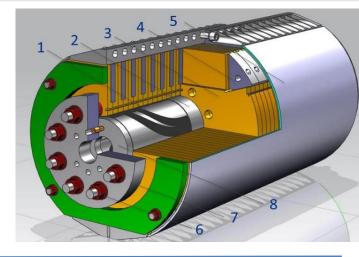

MDP Management Group S. Prestemon, LBNL G. Velev, FNAL L. Cooley, FSU S. Gourlay, LBNL D. Larbalestier, FSU A. Zlobin, FNAL

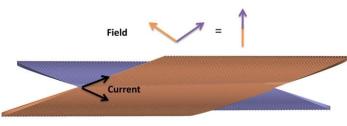
Technical areas have leads who are responsible for coordination and planning

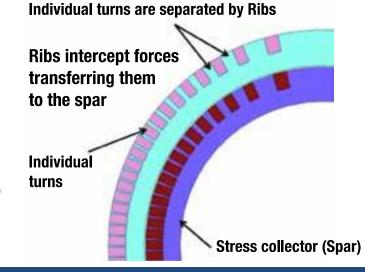
Magnets	Lead
Cosine-theta 4-layer	Sasha Zlobin
Canted Cosine theta	Diego Arbelaez
Bi2212 dipoles	Tengming Shen
RERCO dinoles	Xiaorong Wang
Cond Proc and R&D	Lance Cooley

Technology area	LBNL lead	FNAL lead
Modeling & Simulation	Diego Arbelaez	Vadim Kashikhin
Training and diagnostics	Maxim Martchevsky	Stoyan Stoynev
Instrumentation and quench protection	Emmanuele Ravaioli	Thomas Strauss
Material studies – superconductor and structural materials properties	lan Pong	Steve Krave

Technology development



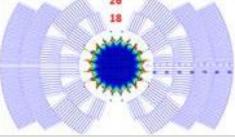

Science

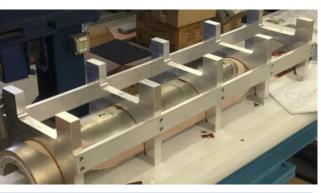

We have initiated a two-prong approach to high field dipoles to explore the limits of Nb₃Sn

A reference design based on a 4-layer cosine-theta magnet utilizing highperformance Nb₃Sn

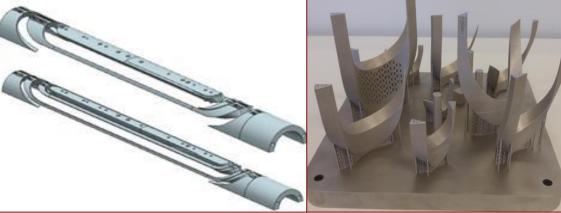
- A path to explore innovative designs
 - Starting with the canted cosine-theta (CCT), a different paradigm that integrates mechanical structure internally

Overview of the Nb₃Sn Milestone Plan, Highlighting the Cos(θ) Reference Magnet Development and the Innovation Route with CCT


2016 2017		2018			2019				
ush traditio	nal Cos-thet	a technology t	o its limit	with newest	t conduc	ctor and s	structure		
	Cos-the	Cos-theta 4 layer 15 T		Preload mod	ds	15 T with improvements		4-layer 16 T Cos-theta	
	Leverage latest Nb ₃ Sn and Bladder and Key structure		Impact of preload on training				Optimized 16 T design as baseline		
velop inno	vative conce	pt to address	technolog	y issues at h	nigh fiel	d			
CCT – 2-laye	er 10 T								
1st model	Address	Address	Test	Focus on	Foc	us on	HTS insert	-	
	conductor expansion	assembly issues	alternative materials	training	Pre	rgin pare for S inserts	training		
then demo	nstrate 16 T f	fields, and furt	hermore ι	ise for hybrid	d HTS-L	TS dipole	s		
					CCT - 8-I	aver 16 T	demonstrat	ion	
							1		
				- 4-layer 13				CCT – 8-layer 15 T for hybrid	
			1st r	r F	mproven reproduc possible of future	ibility; element		HTS insert testing	

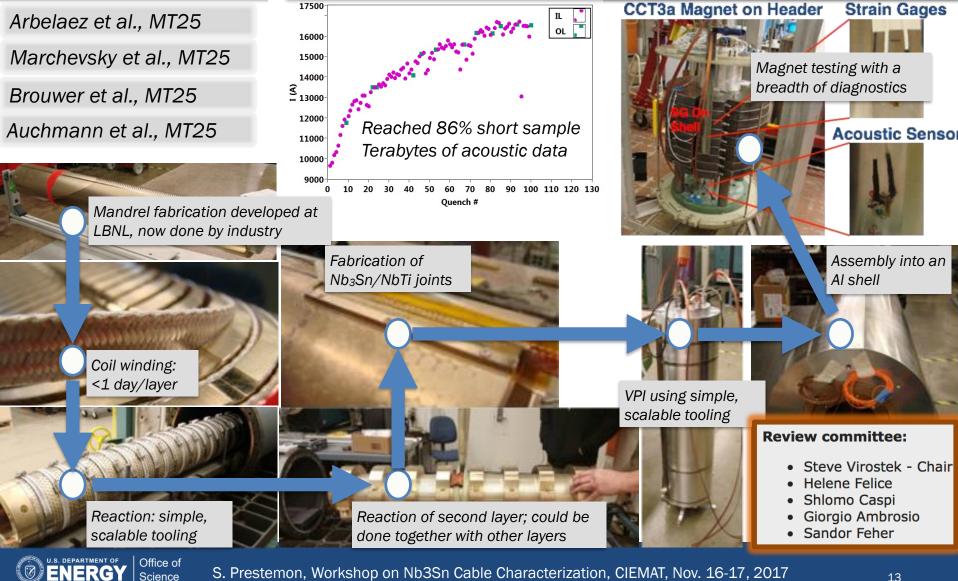


The Cosine-theta 4-layer magnet is proceeding well at FNAL, with 3 outer layer coils completed, mechanical model currently being tested



Novel coil layout addressing midplane stresses and field quality Zlobin et al. MT25 Kokkinos et al. MT25

Coil parts provided by CERN

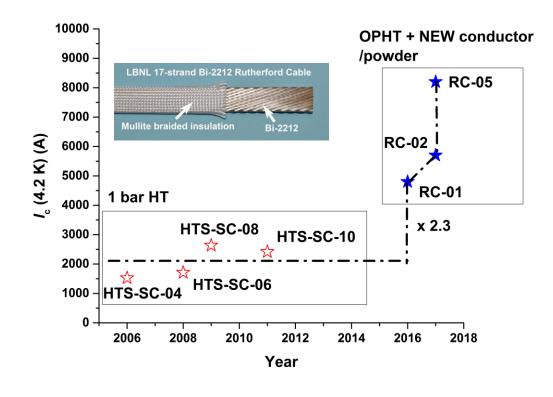

Traces by LBNL/FNAL

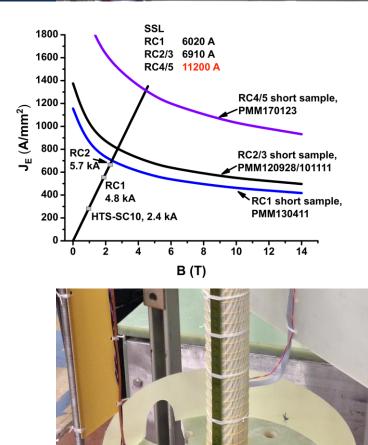
Alfred Nobrega (FNAL)

The CCT program is proceeding to systematically address technical issues

Overview of the HTS Milestone Plan, Highlighting the Bi-2212 Magnet Development and the REBCO Magnet Development

20	15	2016	20)17	2018		2019
Bi-2212							
	Subscale m	agnet program	5 T, 50mm bore dipole			2T in 5T, 0.5 m long demo dipo	
REBCO							
		Technology exploration & magnet design studies					T in 15T, 0.5 m long emo dipole
			2 T, 20 K conduction cooled demonstration dipole				
Explore other HEP Stewardship applications: Fusion, Medical, Light Sources, etc.							

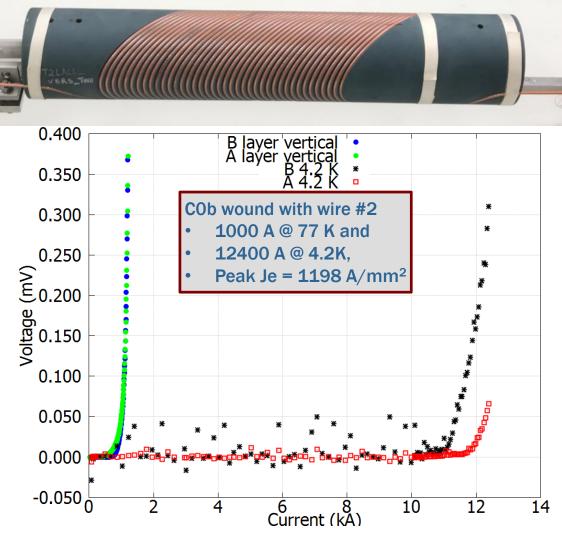

Significant progress on the Bi2212 HTS magnet front: Leveraging overpressure boost in magnet configurations


Bi2212 accelerator magnets:

- Dramatic improvements in conductor properties in last couple of years
- Racetrack & CCT coils fabricated and pushed to their electrical, mechanical, and quench limits
- Solenoids teaching us much as well

Office of

Science



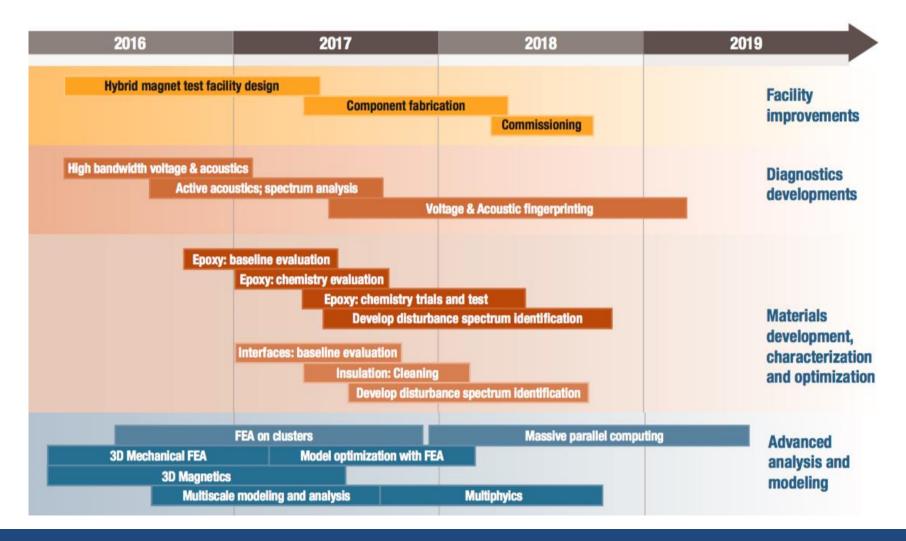
REBCO program developing quickly: conductor and cable characterization, magnet design and prototyping underway

Office of

Science

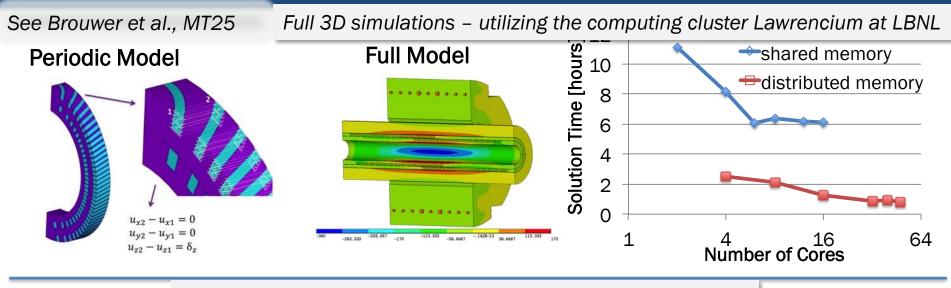
S. Prestemon, Workshop on Nb3Sn Cable Characterization, CIEMAT, Nov. 16-17, 2017

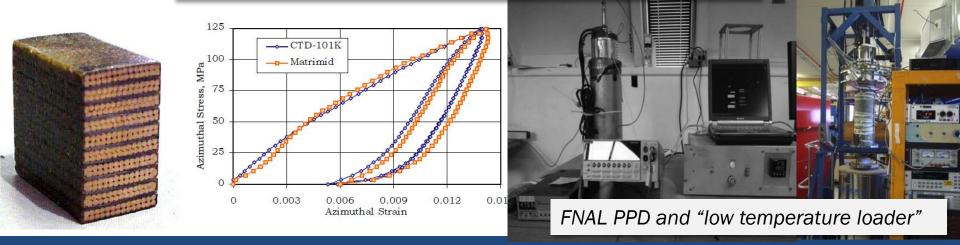
Backbone of the Program: Magnet Science and Development of Underpinning Technologies


Areas of focus:

- Training studies
- Modeling
- Diagnostics, quench detection, protection
- Develop infrastructure, e.g. insert testing
- New materials insulation, impregnation and structural
- Design comparison and cost analysis to guide program

Improvements/advances from this part of the program are then integrated into the Nb₃Sn and HTS magnets

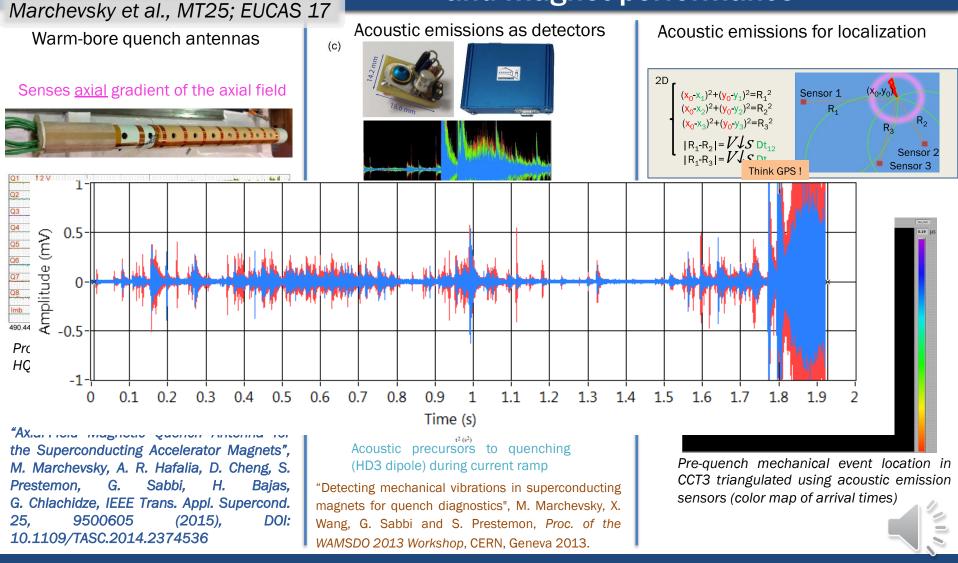

Overview of the Technology Development Milestone Plan, which Feeds the Nb₃Sn and HTS Magnet Program Elements



S. Prestemon, Workshop on Nb3Sn Cable Characterization, CIEMAT, Nov. 16-17, 2017

Numerous technology advances are essential to address the high field magnet challenge

Ten-stack measurements provide critical materials properties


U.S. MAGNET

PROGRAM

DEVELOPMENT

U.S. MAGNET DEVELOPMENT PROGRAM

Advanced diagnostics are providing new and critical insight into the mechanisms of training and magnet performance

20

Superconducting Materials Procurement and R&D is Critical for Program Success

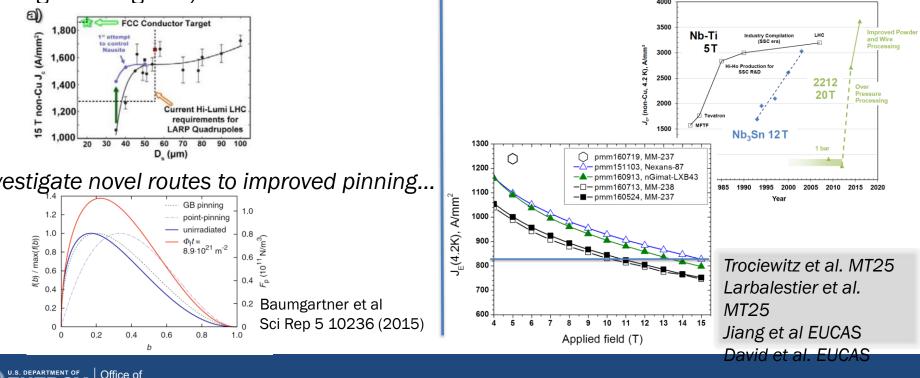
Performance of today's state of the art Nb₃Sn is the results of long term HEP

Sanabria et al., MT25

- Push performance limits of Nb₃Sn and HTS conductors
- Lombardo et al., **MT25**

Lee et al., EUCAS Tarantini et al., EUCAS Nb₃Sn

investment in conductor R&D


Leverage existing wire/architecture...

Science

Investigate novel routes to improved pinning...

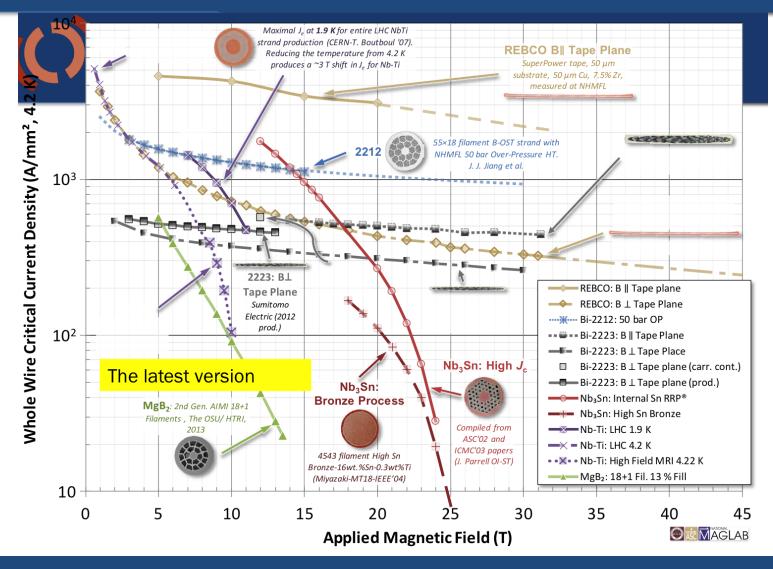
Bi2212

Impressive J_E improvements through OP processing and advances in powder...

Conclusions

- The US has invested heavily in high-field Nb₃Sn superconducting accelerator magnets...
- ...Has invested in transitioning basic magnet R&D to the HL-LHC project via the LARP technology readiness program,...
- ...And continues investments in basic magnet R&D with a focus towards the next generation collider
- Throughout, significant research and expertise has been focused on Nb₃Sn superconductor development, with tremendous dividends in conductor performance

Backup slides


U.S. DEPARTMENT OF

ENERGY

Office of

Science

Exciting advances in HTS properties, but cost remains a major hurdle

The Program is guided by **Driving Questions... related to performance**

- **1**. What is the nature of accelerator magnet training? Can we reduce or eliminate it?
- 2. What are the drivers and required operation margin for Nb₃Sn and HTS accelerator magnets?
- 3. What are the mechanical limits and possible stress management approaches for Nb_3Sn and 20 T LTS/HTS magnets?
- 4. What are the limitations on means to safely protect Nb₃Sn and HTS magnets?

The Program is guided by **Driving Questions...related to cost**

- 5. Can we provide accelerator quality Nb₃Sn magnets in the range of 16 T?
- 6. Is operation at 16 T economically justified? What is the optimal operational field for Nb₃Sn dipoles?
- 7. What is the optimal operating temperature for Nb₃Sn and HTS magnets?
- 8. Can we build practical and affordable accelerator magnets with HTS conductor(s)?
- 9. Are there innovative approaches to magnet design that address the key cost drivers for Nb₃Sn and HTS magnets that will shift the cost optimum to higher fields?

The Program is guided by **Driving Questions...** related to conductor development

(1) What are the near and long-term goals for Nb₃Sn and HTS conductor development? What performance parameters in Nb₃Sn and HTS conductors are most critical for high field accelerator magnets?

