Status of A15 Superconductor Developments in Asia

Toru OGITSU KEK

Acknowledgement

JASTEC:

S. Kawashima, K. Saito, Y. Fukumoto

• Furukawa Electric:

M. Sakamoto, H. Shimizu

• NIMS:

A. Kikuchi

Tohoku Univ.:

S. Awaji

• KEK:

T. Nakamoto, M. Sugano

• CERN:

A. Ballarino

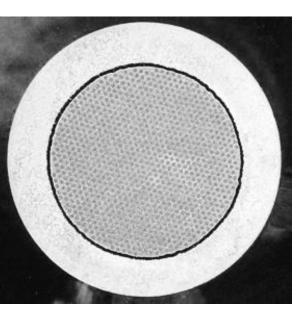
KAT:

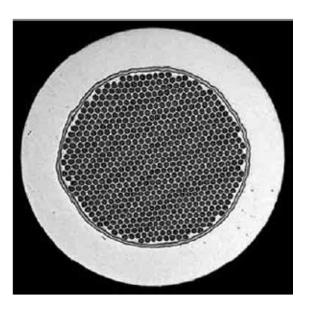
J. Kim

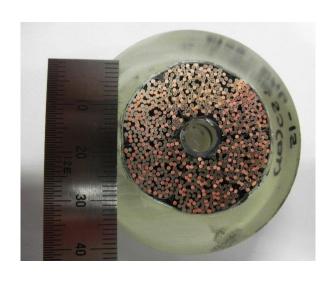
WST:

J. Liu

Contents


- Activities in Japan
 - Nb₃Sn Manufacturers in Japan
 - JASTEC/KOBELCO
 - Furukawa electric.
 - Activity at NIMS for Nb₃Al
 - Stress/Strain Studies
- Other Asian Activities
 - Korea KAT: FCC week 2017, KAT Introduction & Products 2015
 - China WST: MT25





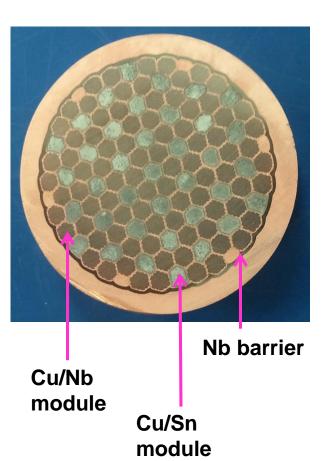
JASTEC Bronze Nb₃Sn Wire

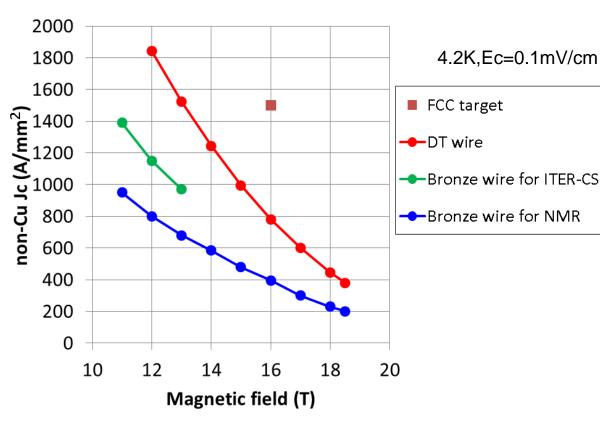
- > JASTEC is a world primary wire manufacturers, especially for Nb₃Sn.
 - For NMR: ~10 tons every year
 - For ITER: 100 tons in total
- > JASTEC supplied TF & CS (Nb₃Sn) wires for ITER.
 - 40 tons for TF conductor (40% of JAPAN contribution)
 - 60 tons for CS conductor (43% of total procurement

Strand (TF)

Strand (CS)

Cable (CS)





Distributed Tin(DT) Nb₃Sn Wire

We are developing the DT process, with **higher Sn concentration**. ⇒Bronze process : < 16 wt %Sn, DT process : 37.3 wt %Sn

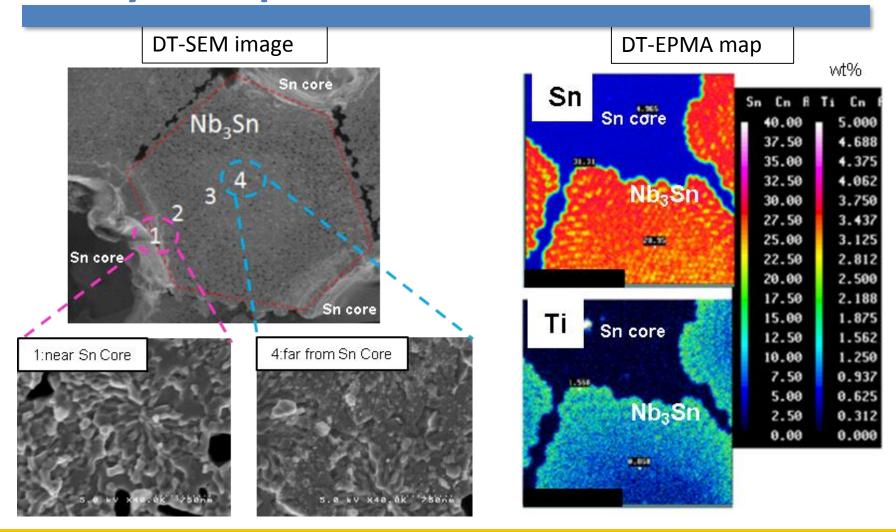
(1) Improvement of Sn diffusion

: Reduction of Sn diffusion distance

(2) Increase Nb volume fraction

: Reduce useless volume

(3) Ternary additive elements

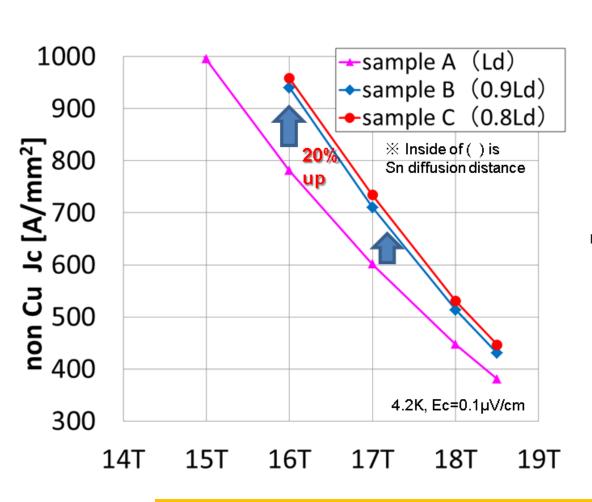

: Amount and method

(4) Optimization of heat treatment

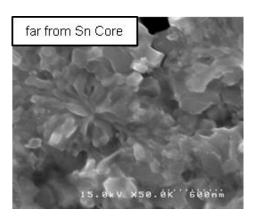
: Stoichiometry, Refinement

Property	Units	FCC requirements	Current status
Strand diameter	(mm)	0.5-1.0	0.8-1.5
non Copper J _c (4.2 K, 16 T)	(A/mm²)	≥ 1500	800
μ _o M (1 T, 4.2 K)	(mT)	≤ 150	~200
$\sigma(\mu_0 M)(1 \text{ T, 4.2 K})$	(%)	≤ 4.5	
D_{eff}	(μm)	≤ 20	3(nominal)
RRR		≥ 150	150-170
Unit Length	(m)	≥ 5000	~7000

Analysis of present DT after HT



Near the center of Nb module, the number of fine crystal grains decrease. Also the distribution of Ti and Sn seems poor.



Improvement of Sn diffusion

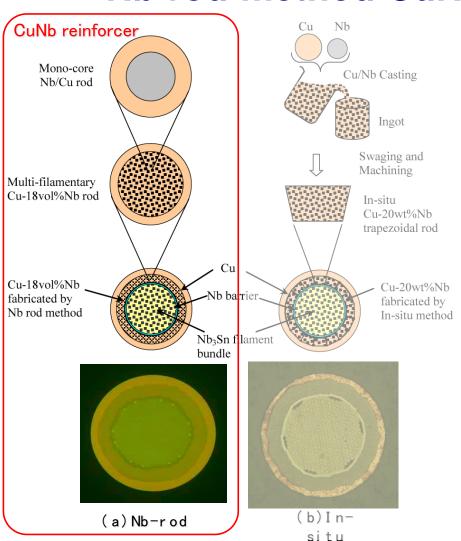
By Reducing Sn diffusion distance,
Jc improved by 20% to improve Sn diffusion.

Conclusion and Next steps

- Conclusion
 - DT wire as a high Jc Nb₃Sn wire for FCC.
 - By improving Sn diffusion, non Cu Jc@16T is almost 1000A/mm².
- Next steps
 - By increasing Nb volume fraction,
 non Cu Jc>1100A/mm² @16T was a prospect.
 - •Furthermore, we will perform optimization of ternary additive elements and refinement of Nb₃Sn grain size etc., Our goal is 1500 A/mm² @16T.

FURUKAWA ELECTRIC

ITER-CS Wire -Design for higher Jc & lower Ph-



Items	2008 design	2012 design	
Strand final diameter (mm)	$0.83\!\pm\!0.005$	0.83±0.005	
Cr-plating thickness (µm)	2 +1/-0	2 +0/-1	
Cu/Non-Cu ratio	1.0 ±0.1	1.0 ±0.1	
Twist pitch (mm), direction	15 \pm 2 (R.H.H)	15± 2 (R.H.H)	
Diffusion Barrier	Та	Та	
Bronze composition (wt%)	16Sn-0.3Ti	15.7Sn-0.3Ti	
Filament dia. (µm)	3.3 (nominal)	2.3 (nominal)	
Cross-section	WD12 4mm 20. 0kV x100 50	Optimized for	
		ITER-CS	

Mechanical Reinforcement

Nb-rod-method CuNb reinforced Nb₃Sn

Applied tensile stress (MPa)

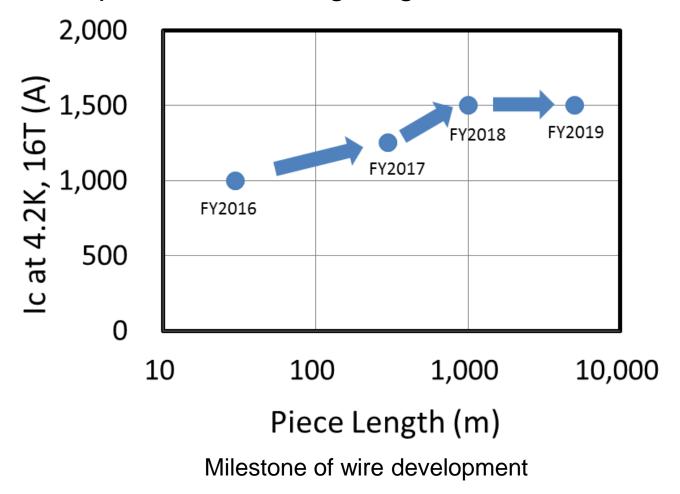
Feature of Nb-rod-method

- Excellent Ic vs stress performance
- ➤ Useful RRR larger than 100:

count as stabilizer!!

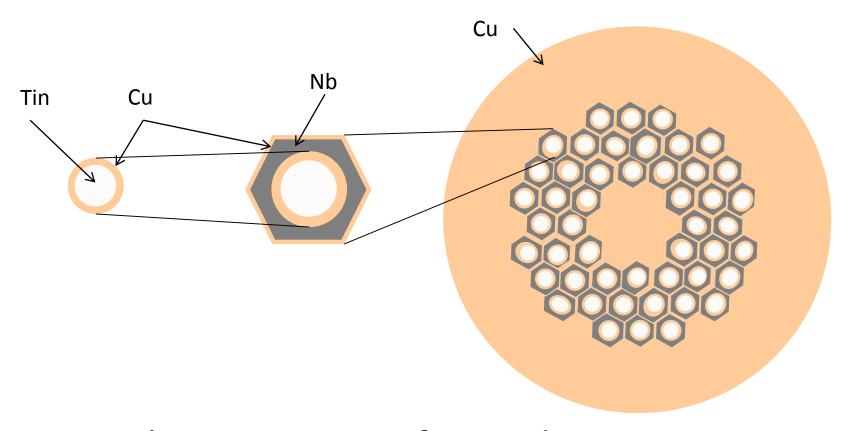
➤ Suitable for mass-production

Strand cress section


This work was performed under collaboration with HFLSM, IMR, Tohoku University.

Nov. 17, 2017 T. Ogitsu, Nb₂Sn Rutherford Cable WS, Madrid Spain

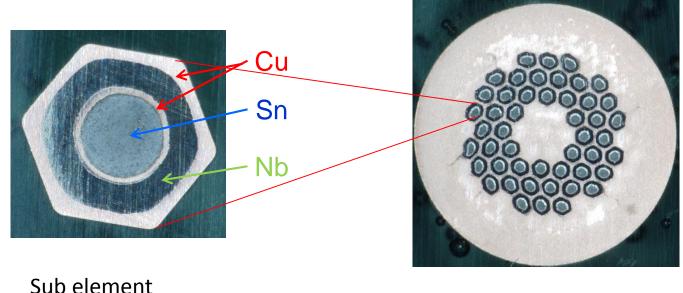
Wire Development at Furukawa Electric(FEC)


- FEC started to develop high Jc type Nb₃Sn Wire in FY2016.
- Wire will be processed through high-tin content method.

All Rights Reserved, Copyright© FURUKAWA ELECTRIC CO., LTD. 2017

Strand Design

Nb Tube Method



Schematic View of Strand Design

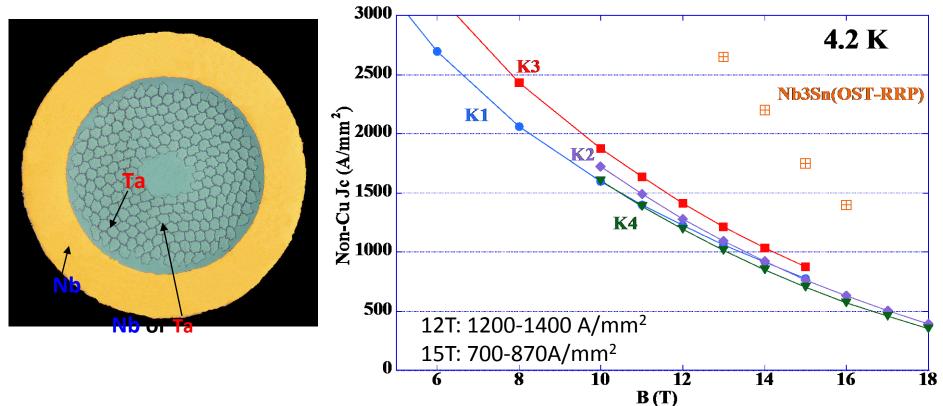
All Rights Reserved, Copyright© FURUKAWA ELECTRIC CO., LTD. 2017

Status of Development

- 1st trial is finished.
- Issue on fabrication is identified.

Strand at 1st trial

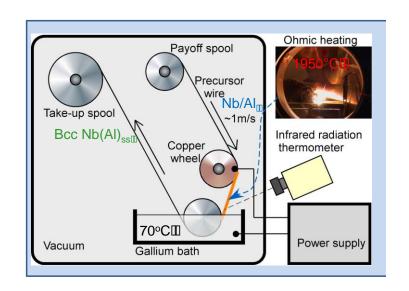
The 2nd trial is now on going

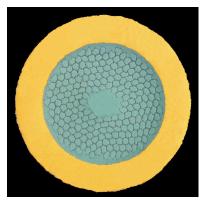

All Rights Reserved, Copyright© FURUKAWA ELECTRIC CO., LTD. 2017

Contents

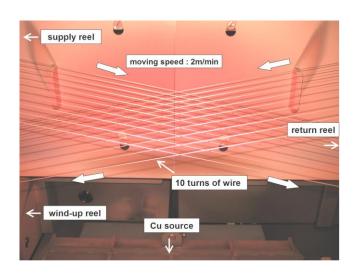
- Activities in Japan
 - Nb₃Sn Manufacturers in Japan
 - JASTEC/KOBELCO
 - Furukawa electric.
 - Activity at NIMS for Nb₃Al
 - Stress/Strain Studies
- Other Asian Activities
 - Korea KAT: FCC week 2017, KAT Introduction & Products 2015
 - China WST: MT25

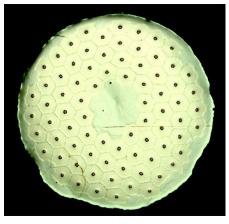
RHQ-Nb₃Al w/ Ta Barrier




- Collaborative work between NIMS and KEK with a support from CERN (~2011)
- Development for high field accelerator magnet
- B_{c2}(4.2K): 19- 30 T+Good strain tolerance=Good for High Field

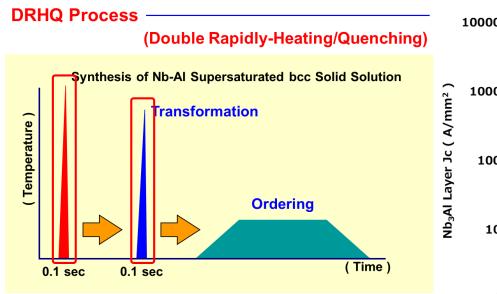
Issues for RHQ-Nb₃Al

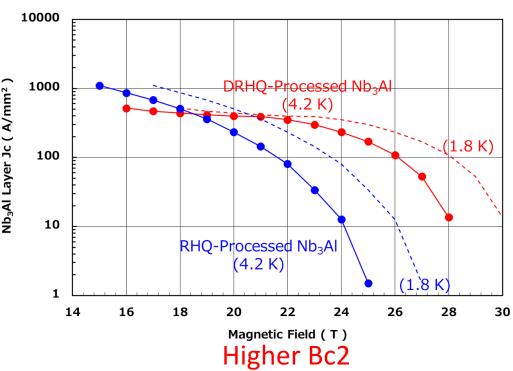

- Many wire breakings with Ta matrix.
- RHQ process using Ga bath
 - Removal of Ga to clean wire surface
- Copper stabilization
 - Ion-plating
 - Copper electroplating



Issues for RHQ-Nb₃Al : Efforts for Improvement

- Many wire breakings with Ta matrix.
 - >> Nb alloy matrix w/ good drawability
- RHQ process using Ga bath >> Gas quenching
 - Removal of Ga to clean wire surface
- Copper stabilization
 - Ion-plating
 - Copper electroplating >> speed-up





Double RHQ Processed Nb₃Al Conductor

High Temperature Phase
Transformation from bcc to A15

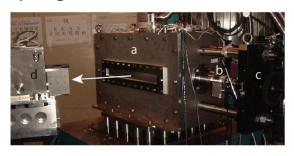
- Significant improvement of Jc beyond 20 T by DRHQ process
- Great potential for Inner coil of >20 T magnet
 - Coil winding would be challenging...

Contents

- Activities in Japan
 - Nb₃Sn Manufacturers in Japan
 - JASTEC/KOBELCO
 - Furukawa electric.
 - Activity at NIMS for Nb₃Al
 - Stress/Strain Studies
- Other Asian Activities
 - Korea KAT: FCC week 2017, KAT Introduction & Products 2015
 - China WST: MT25

Various Load Frames for Q-beams

Load frames at Takumi@J-PARC (Neutron)



Flight time dispersion measurements.

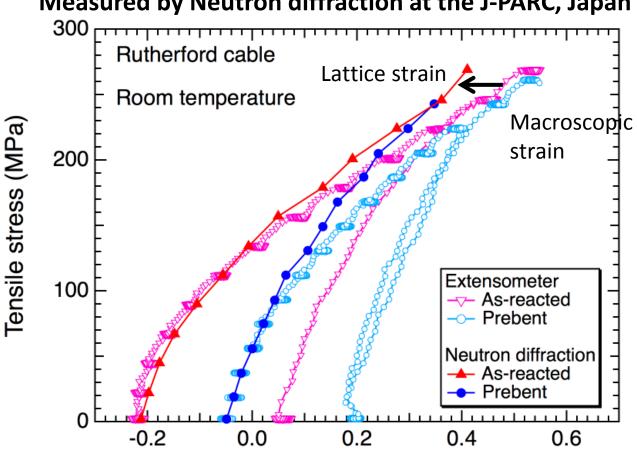
Tensile load up to 50 kN at RT, HT(furnace) and LT (6K).

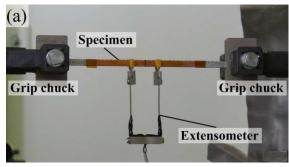
Compressive load jig also available.

Cryogenic load frame at RESA @JAEA (Neutron)

Angle dispersion measurements. Tensile load up to 50kN at LT.

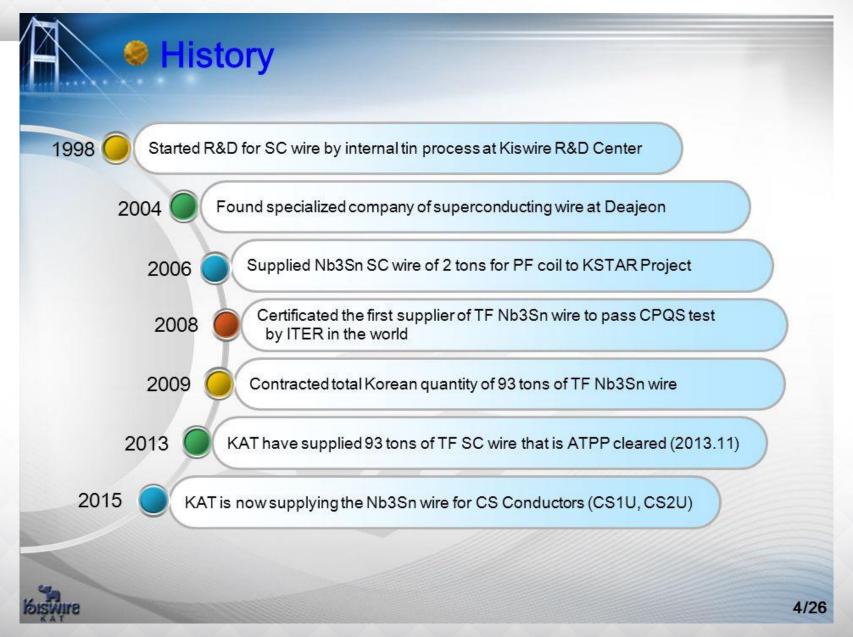
Load frame at SPring 8 (X-ray)


Angle dispersion measurements.


Tensile load up to 2kN at RT and LT (~25 K).

Lattice Strain & External Strain in CuNb/Nb₃Sn Rutherford cable

Lattice strain (%)


The strain in the strands is smaller than the macroscopic strain of cable.

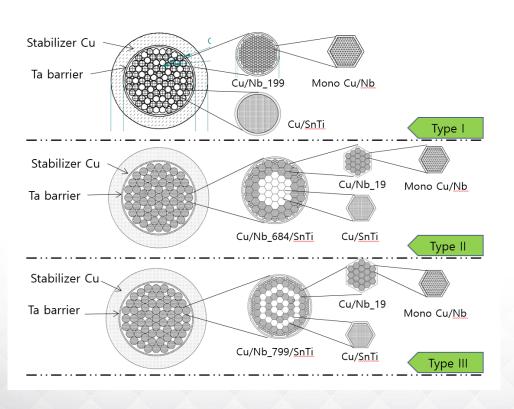
Takahashi et al. IEEE TAS 25 (2015) 8400104

Contents

- Activities in Japan
 - Nb₃Sn Manufacturers in Japan
 - JASTEC/KOBELCO
 - Furukawa electric.
 - Activity at NIMS for Nb₃Al
 - Stress/Strain Studies
- Other Asian Activities
 - Korea KAT: FCC week 2017, KAT Introduction & Products 2015
 - China WST: MT25

KAT Introduction & Products May 2015

KAT Introduction & Products May 2015


Nb3Sn Wire Specification

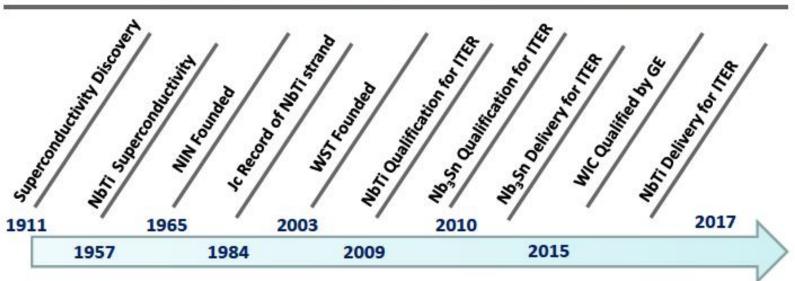
ITEM	TF Strand	CS Strand	Comment	
Superconductor Type	Nb3Sn	Nb3Sn		
Minimum Piece Length	1,000m	1,000m		
Cr-plated Strand Dia	0.82 ± 0.005mm	0.82 ± 0.005mm	66233	
Twist Pitch	15 ± 2mm	15 ± 2mm		
Twist Direction	Right Hand Twist	Right Hand Twist		
Cr Plating Thickness	2.0 +0/-1µm	2.0 +0/-1µm	ROTO DE	
Cu/Non Cu Ratio	1.0 ± 0.1	1.0 ± 0.1		
RRR	> 100	> 100	Between 273 and 20K, after HT	
Minimum Critical Current	Ic ≥ 250A	Ic ≥ 250A	at 4.22K and 12T	
n-value	> 20	> 20	at 4.22K and 12T in 0.1~1μV/cm	
Maximum Hysteresis Loss	< 600 mJ/cc	< 500 mJ/cc	at 4.22K over a ± 3T cycle	

Strand Design Studies for FCC Conductor

❖ Trial designs of Nb₃Sn for FCC

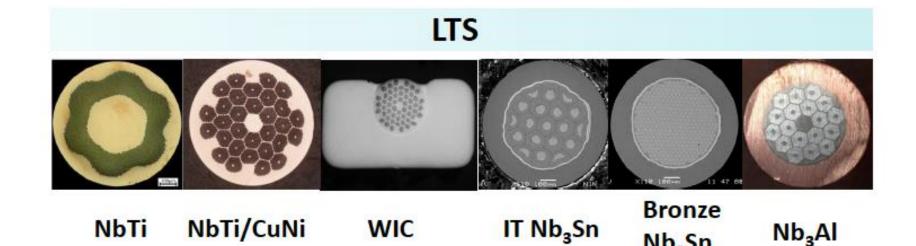
✓ Designed parameters

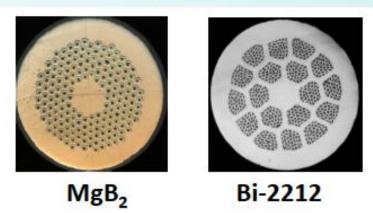
Parameters	Unit	Type I	Type II	Type III
Diameter	mm	1	1	1
Cu/N-Cu		0.99	1.02	0.98
No. Filaments	ea	11,542	41,724	48,739
Effective dia.	μm	68.82	85.71	85.71
Filament dia.	μm	4.04	2.13	1.93
Cu fraction	%	15.11	15.26	15.77
Ic_Filament@16T	А	0.035	0.012	0.010
lc@16T	А	409	489	489
NonCu Jc@16T	A/mm ²	1037	1260	1260
At % 3Sn/Nb		0.99	0.85	0.92


Contents

- Activities in Japan
 - Nb₃Sn Manufacturers in Japan
 - JASTEC/KOBELCO
 - Furukawa electric.
 - Activity at NIMS for Nb₃Al
 - Stress/Strain Studies
- Other Asian Activities
 - Korea KAT: FCC week 2017, KAT Introduction & Products 2015
 - China WST: MT25

Milestones of WST




J. Liu MT25

Superconductor Family of WST

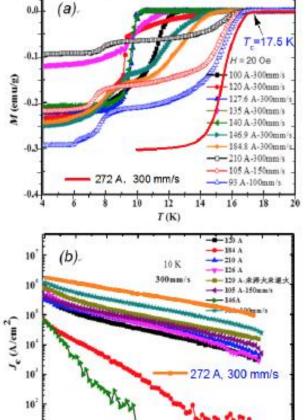
HTS

J. Liu MT25

Nb₃Sn

Nb₃Al wire

Rapid heating and quenching (RHQ) heat-treatment


♦RHQ heat-treatment process of reel-to-reel Nb₃Al wires with a continuous increasing sintering current.

♦Our aim is to develop the practical high performance Nb₃Al superconducting wires, many efforts are still being ongoing.

B(T)

J. Liu MT25

Summary

- Various A15 activities in Asia
- Japan
 - Distributed tin Nb₃Sn by JASTEC/Kobelco
 - Nb tube Nb₃Sn by Furukawa electric
 - RHQ Nb₃Al by NIMs
 - Stress strain studies using quantum beams
- Korea
 - Internal tin Nb₃Sn by KAT (FCC week 2017)
- China
 - Various activities in WST including RHQ Nb₃Al (MT25)