Dimensional Changes of Nb3Sn Cables During Heat Treatment

17/11/17

E. Rochepault (CERN, now CEA Paris-Saclay), on behalf of:
<u>CERN</u>: P. Ferracin, A. Ballarino, A. Bonasia, B. Bordini, L. Garcia Fajardo (now LBNL), S. Izquierdo Bermudez, J.C. Perez, <u>FNAL</u>: G. Ambrosio, E.F. Holik, M. Yu
<u>LBNL</u>: D. Cheng, D.R. Dietderich, H. Felice (now CEA Paris-Saclay), I. Pong, BNL: M. Anerella, A. Ghosh, J. Schmalzle,

11/17/2017

Context and Motivations

- Early observations at LARP for LQ-HQ:
 - Radial expansion + longitudinal contraction observed in coils during Heat treatment at 650°C [1-2].
 - **Residual strain** altering the performances [3].
 - \rightarrow Provide space in the tooling for dimensional changes.
- Collaboration between CERN and LARP for the HiLumi LHC [4]
- Study on strands, single Rutherford cables, cable stacks, and coils:
 - Understand the behavior of **cable dimensions** during heat treatment
 - **Provide estimates** of the space to be accommodated [5]

[1] D. R. Chichili et al., "Fabrication of the Shell-type Nb3Sn Dipole Magnet at Fermilab," IEEE Trans. Appl. Supercond., 2001.
[2] G. Ambrosio et al., "Development and Coil Fabrication for the LARP 3.7-m Long Nb3Sn Quadrupole," IEEE Trans. Appl. Supercond., 2009.
[3] H. Felice et al., "Impact of Coil Compaction on Nb3Sn LARP HQ Magnet," IEEE Trans. Appl. Supercond., 2012.
[4] P. Ferracin et al., "Development of MQXF: The Nb3Sn Low-β Quadrupole for the HiLumi LHC", IEEE Trans. Appl. Supercond., 2016.
[5] S. Izquierdo Bermudez et al., "Second Generation Coil Design of the Nb3Sn low-B Quadrupole for the High Luminosity LHC," IEEE Trans. Appl. Supercond., 2016.

•

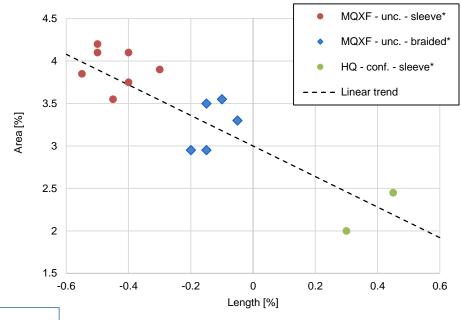
Strand Volume Expansion

- Free bare strands [6]
- Expansion increases with superconductor content [8]
- Thickness growth of rolled wires = up to 2x radius growth of virgin wires [8]
 - \rightarrow stress accumulated during rolling and released during heat treatment

	Sample	Cu:Sc	Radius/Thick. [%]	Length [%]
5	MQXF RRP virgin	1.2	1.8	-*
lge	MQXF PIT virgin	1.2	1.6	-
Dimensional changes of strands, tble data.	RRP virgin [7]	1.15	1.8	0.08
	RRP virgin [7]	0.85	2.2	0.04
	IT virgin [8]	0.61	1.8	-
ensio data	PIT virgin [8]	0.83	2.2	-
nin able	ITER virgin [8]	1.42	0.9	-
age vails	IT rolled [8]	0.61	4.4	-
Average Dime *Unavailable	PIT rolled [8]	0.83	2.3	-
ل ک	ITER rolled [8]	1.42	1.9	-

In average: **Radius: +1,7% Area: +3,4% Length: +0,1% Volume: ~+3,5%**

[6] E. Rochepault et al. "Dimensional Changes of Nb3Sn Rutherford Cables during Heat Treatment", IEEE Trans. Appl. Supercond.; 2016
[7] D. Bocian et al., "Measurements of Nb3Sn Conductor Dimension Changes During Heat Treatment.", AIP Conf. Proc., 2012
[8] N. Andreev et al., "Volume Expansion of Nb-Sn Strands and Cables During Heat Treatment," Adv. in Cryogenic Eng., 2007.


Cable Transverse Expansion

Single cables [9]

- Free cables contract in length (-0.6 to 0 %) → remaining cabling tension or friction between the strands?
- Confined cables:
 - Area: +2.2 %
 - Volume: +2.6 %
- Unconfined cables, braid:
 - Area: +3.4 %
 - Volume: +3.2 %
- Unconfined cables, sleeve:
 - Area: +3.9 %
 - Volume: +3.5 % ≈ free strands

Transverse confinement has a significant impact on dimensional changes.

Area expansion vs. length expansion. *Courtesy of I. Pong [9]

[9] I. Pong, D. R. Dietderich and A. Gosh, "Dimensional Changes of Nb3Sn Cables during Heat Treatment". Presented at ICMC 2015

11/17/2017

Cable stacks

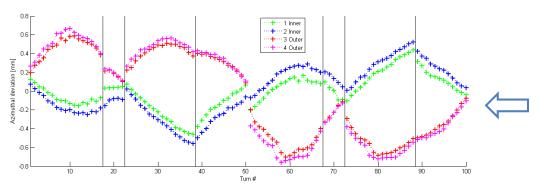
- Stacks reacted in free cavities [6]
- Thickness ≈ rolled wires
- Width ≈ virgin wires

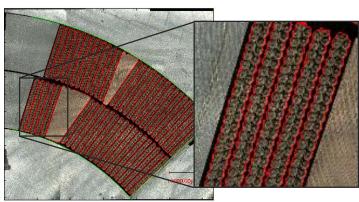
Bare cable stack

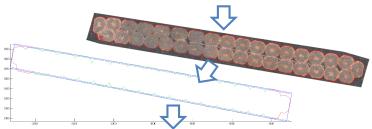
Insulated cable stacks

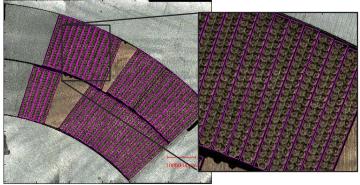
Sample	Thickness [%]	Width [%]	Length [%]
MQXF RRP bare cable	2.5	1.7	-
MQXF PIT bare cable	3.0	1.5	-
MQXF RRP braided	2.5	-	-
MQXF unconf. sleeve [9]	2.8	1.1	-0.4
MQXF unconf. braided [9]	3.2	0.0	-0.1
HQ conf. sleeve [9]	2.1	0.1	0.4
FRESCA2 RRP 10-stack [10]	3.0	-	-
FRESCA2 PIT 10-stack [10]	3.6	-	-

[10] M. Durante et al., "Nb3Sn Rutherford cables geometrical behavior during heat treatment," IEEE Trans. Appl. Supercond., 2016


Coil Transverse Expansion






Automated Image Analysis [6]

- 1. Clean the image
- 2. Detect the cable contours
- 3. Fit trapezoids on each contour
- 4. Post-process: shape, position, size...
- + Reliable and reproducible
- + Not user-dependent
- + Method can be tailored to the needs
- Accuracy depends on quality of picture
- Relies on accurate definition of the contours

Coil Transverse Expansion

- Room in the heat treatment cavity:
 - TQ/LQ: 1 to 2% in width, ~6% in thickness
 - HQ 1G: 0,8 to 1,3% in width, 1,4 to 1,8% in thick. [3]
 - HQ 2G: 1,4% in width, 3,9% in thick. [11]
 - LARP 1G: 2% in width, 4,5% in thick.
 - Measured: 0 to 0,5% in width, ~3% in thick. [6,12] ≈ braided cables
 - LARP 2G: 1% in width, 3% in thick. [13]

Coil	Method	Thickness [%]	Width [%]
CERN 101 -	3D measurement machine	3.0 +/- 1.3*	0.14 +/- 0.15
CERN IUI	Automated Image Analysis	2.9 +/- 1.3	0.04 +/- 0.17
LARP 1	Laser confocal scope [12]	3.1 +/- 1.4	0.45 +/- 0.17
	Automated Image Analysis	3.3 +/- 1.3	0.12 +/- 0.16

*standard deviation

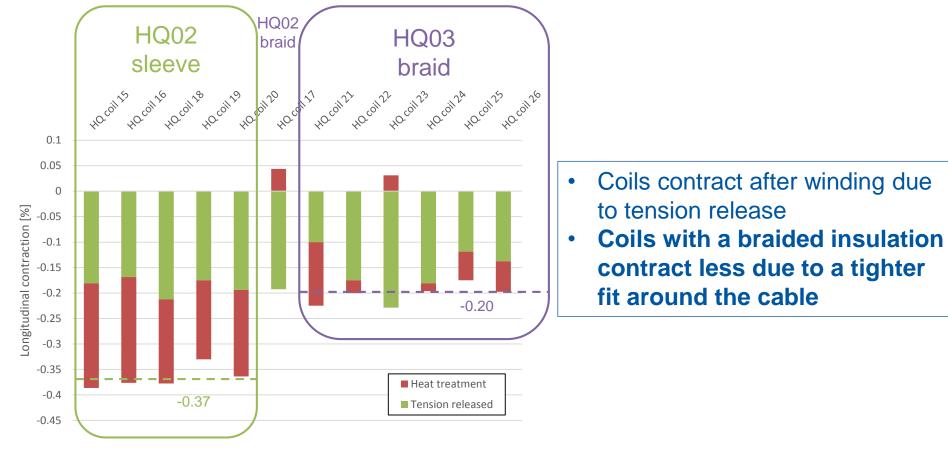
[11] F. Borgnolutti et al., "Fabrication of a Third Generation of Nb3Sn Coils for the LARP HQ03 Quadrupole Magnet," IEEE Trans. Appl. Supercond., 2015 [12] E. Holik et al., "Fabrication and Analysis of 150 mm Aperture Nb3Sn MQXF Coils," IEEE Trans. Appl. Supercond., 2016

[13] S. Izquierdo Bermudez et al., "Second Generation Coil Design of the Nb3Sn low-B Quadrupole for the High Luminosity LHC," IEEE Trans. Appl. Supercond., 2016.

Coil Longitudinal Contraction

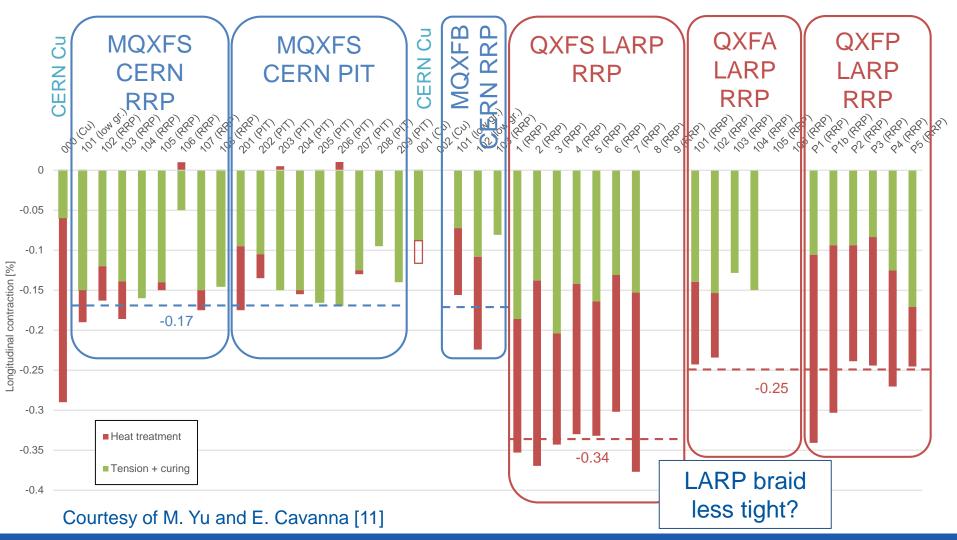
Longitudinal gaps

- HQ: Gaps accommodated in the poles to allow the coils to contract [3] Impact of insulation "tightness" [11]:
 - Sleeves: -0,4 to -0,3 % in length (5 coils HQ 2G)
 - Braid: -0,2 % in length (1 coil HQ 2G + 6 coils HQ 3G)
- MQXF: different pole gaps explored [6,12]
 - Braid: -0,4 to -0,1 % in length (40+ coils)

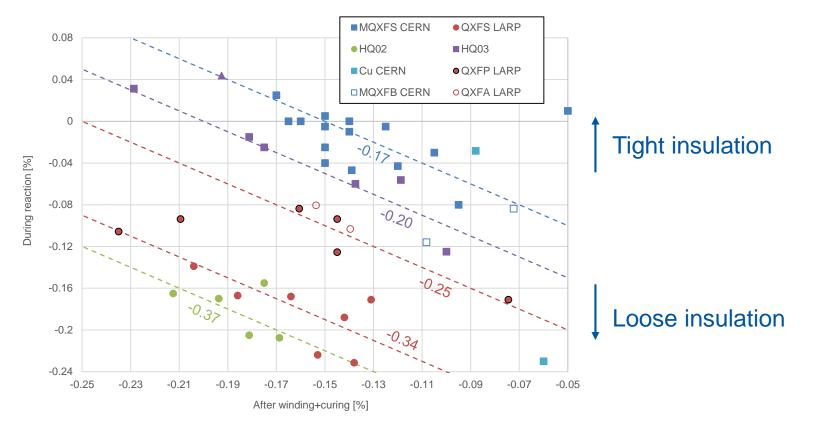

Winding with shims

Open gaps after tension release

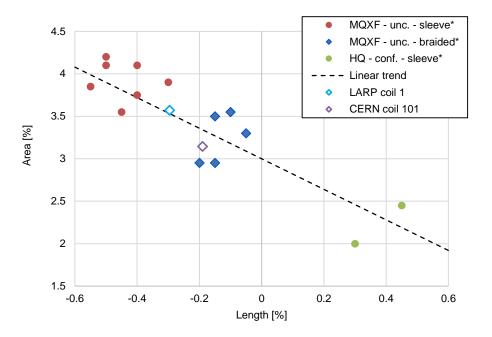
Closed gaps after heat treatment


Coil contraction (HQ [11])

Courtesy of F. Borgnolutti [11]



Coil contraction (MQXF [6])


Coil contraction

- Coil that contract more after winding will contract less during reaction
- QXF LARP coils contract less suposedly because of less tight braid

Transverse Vs Longitudinal

Coils/cables with more confinement (tight cavity or insulation):

- Less transverse expansion
- Less longitudinal contraction

Conclusion

- Nb₃Sn naturally expands in all directions during reaction due to phase change → ~3,5 % in volume
- Cables and coils contract in length, likely due to stress release
- A tight insulation (tight braid) may prevent the overall expansion
- Tooling must: Provide an adequate space for transverse expansion
 Allow the longitudinal contraction

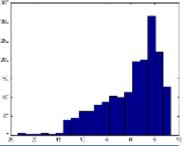
	thickness	width	Length	volume
Single strand	+3.	.4%	+0.1%	+3.5%
Bare cable (or loose insulation)	+3.0%	+1.0%	-0.5%	+3.5%
Braided cable (tight insulation)	+3.0%	0 to +0.5%	-0.2 to 0%	+3.0 to 3.5%

Thank you for your attention,

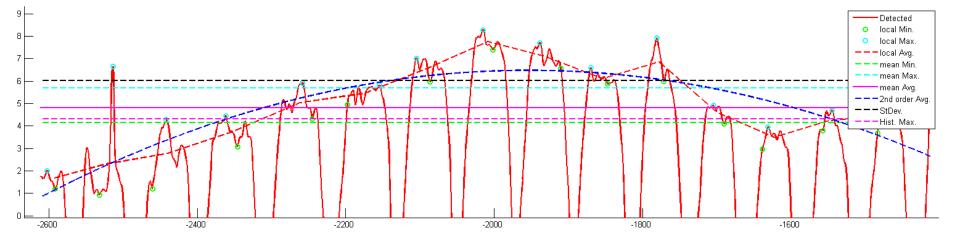
and many thanks to everyone for providing the data and for useful discussions!

11/17/2017

Backup slides



MXQF conductor parameters


Parameter	1 st Gen.	2 nd Gen.	Unit
Strand Cu:Sc ratio	1.2	1.2	-
Strand diameter	0.85	0.85	mm
Number of strands	40	40	-
Cable twist pitch	109	109	mm
Un-reacted bare cable mid-thickness	1.525	1.525	mm
Un-reacted bare cable width	18.150	18.150	mm
Cable keystone angle	0.550	0.400	0
Cable insulation thickness	0.150	0.145	mm

Trapezoid fits – top face

	Local individual strand				ł	2 nd order fit on local Avg.		Statistical analysis	
	Mean Min.	Mean Max.	Min. Avg.	Mean Avg.	Max. Avg.	Min.	Max.	Stdev.	Hist. Max.
Pos [pix]	4.1	5.7	1.7	4.8	7.8	0.8	6.5	6.0	4.3
Th. [mm]	1.349	1.383	1.299	1.364	1.428	1.280	1.400	1.390	1.354
Exp. [%]	-1.9%	0.6%	-5.6%	-0.8%	3.8%	-6.9%	1.8%	1.1%	-1.6%

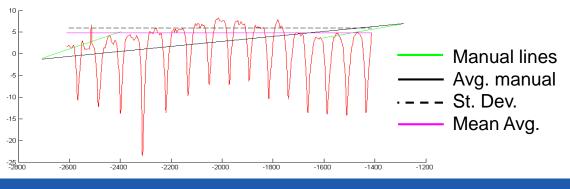
11/17/2017

E. Rochepaul

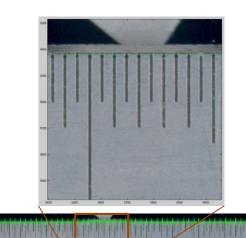
Accuracy

- Using the bottom ruler
- Drift on left ruler due to scanning Reference = 111 mm/10500 pixels 10 mm = 945.946 pixels10 pixels = 105.714 µm
- Errors:
 - Due to scaling:
 - $2 \text{ pixels}/10500 = 2 \times 10^{-4}$
 - Due to detection:

2 pixels = 20 μ m (depending on image resolution, can be corrected)


10000

1000


2000

3000

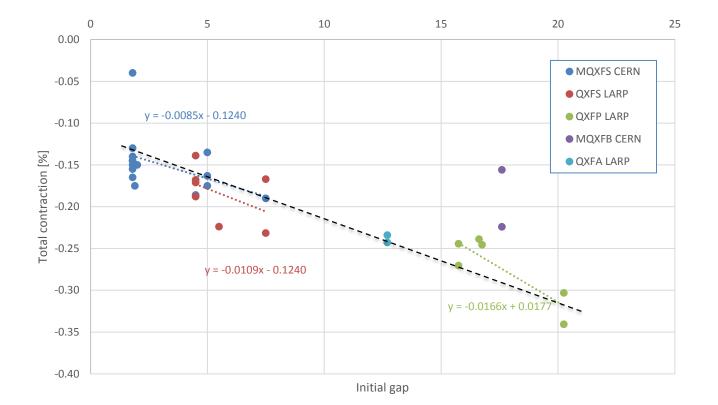
- Due to thickness definition: up to 6 pixels = $60 \mu m$
- We would like:
 - 1% of 1.375 mm $= 14 \ \mu m = 14 \ pixels$

6000

7000

8000

9000


10000

500 510 550 530 540 520 500 510 580 590

5000

4000

Impact of initial gap

11/17/2017