

Cable Insulation Parameters and Dimensional Change in HQ, QXF, and TAMU3

E. F. Holik (FNAL)

G. Ambrosio¹, M. Anerella², R. Bossert¹, E. Cavanna³, D. Cheng⁴, D. R. Dietderich⁴, P. Ferracin³, A. K. Ghosh², S. Izquierdo Bermudez³, S. Krave¹, A. Nobrega¹, J. C. Perez³, I. Pong⁴, E. Rochepault³, G. L. Sabbi⁴, C. Santini¹, J. Schmalzle², and M. Yu¹ P. McIntyre⁵ and A. McInturff⁵

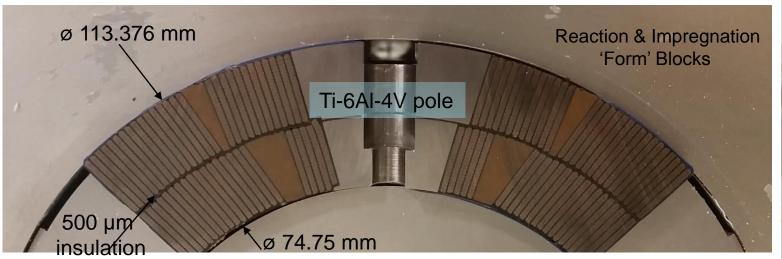
¹FNAL, ²BNL, ³CERN, ⁴LBNL, ⁵TAMU

Workshop series announcement

Nb₃Sn Rutherford cable characterization for accelerator magnets

16-17 November 2017

Compatible with HL-LHC collaboration meeting attendance


CIEMAT, Madrid, Spain

Coil Cross Sections

QXF design is based on the established 120 mm HQ developed by LARP

- 2 layer $cos(2\theta)$ design with 150 mm aperture

U.S. LARP

TAMU3 was 2 racetrack coils that incorporated stress management

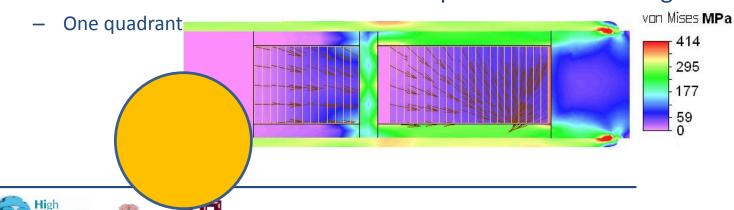


Photo courtesy of S. Izquierdo Bermudez

Superconducting Cables

- Conductor
 - QXF Ø 0.85 mm, 108/127 RRP (Bruker OST)
 - HQ Ø 0.788 mm, 108/127 RRP (Bruker OST)
 - TAMU3 Ø 0.7 mm, 54/61 RRP (Bruker OST)
- Cable
 - QXF 12 μm thick by 10-12 mm wide SS core
 - 40 strands, 18 mm wide, 2nd gen: 0.40°
 - HQ 25 µm thick by 8 mm wide SS core
 - 35 strands, 15 mm wide, 0.75° keystone
 - TAMU3 No core, 34 strands and 13 mm wide
- S-2 Glass sock and braid as insulation,
 - Braided on insulation enables long cable lengths
 - Intimately contacts Rutherford cable

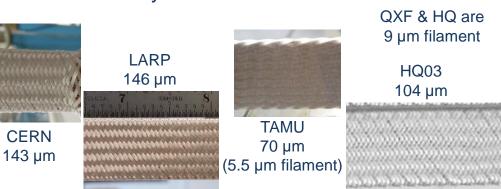
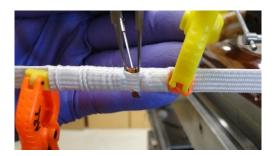
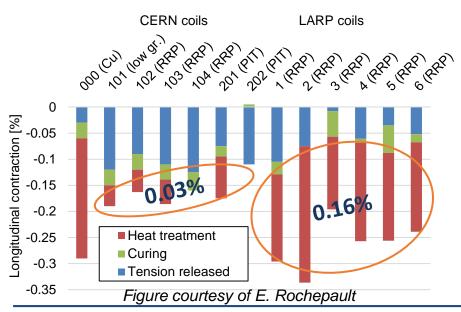
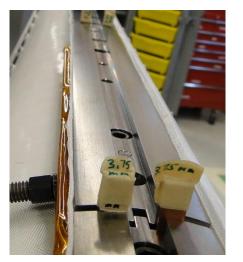



Photo courtesy of P. Ferracin

Loose TQ Sock


Pole Gap measurements for QXF

• Nb₃Sn Cable **expands laterally** when heat treated.


• Nb₃Sn Cable **contracts axially** when heat treated.

 Room is left in coil cavity for cable to expand during heat treatment.

Gaps are left in the pole to allow cable to contract

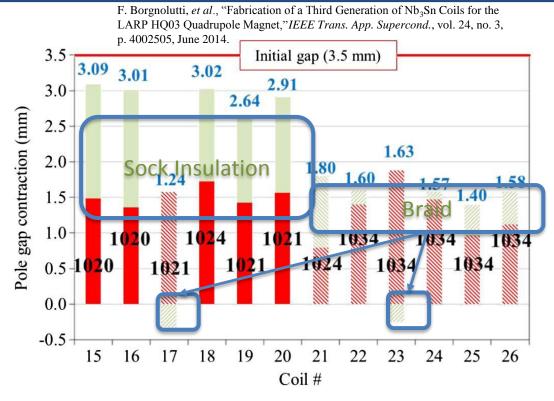
Azimuthal:
4.5% expansion allowed
Measured: 3.0 ± 0.3%

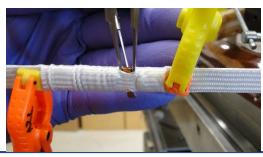
2% → 1.2% allowed expansion Free Cable 1.4% LARP Cable **0.3%**

Radial:

CERN Cable **0.1%**

TAMU expansion partially accommodated by means of a laminar spring.


Nb₃Sn Rutherford cable characterization for accelerator magnets


Pole Gap Measurements from HQ02

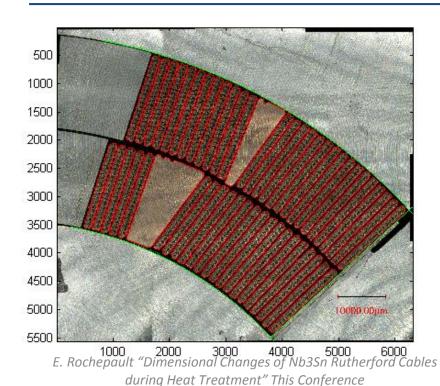
Pole Gap
 Closure

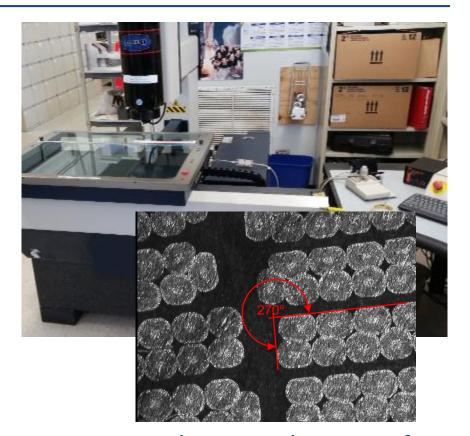
From Heat Treatment


From Removing Shims Releasing Tension

Sock

Braid: Enables Long Cable lengths

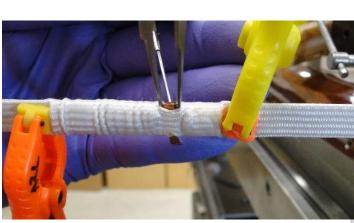


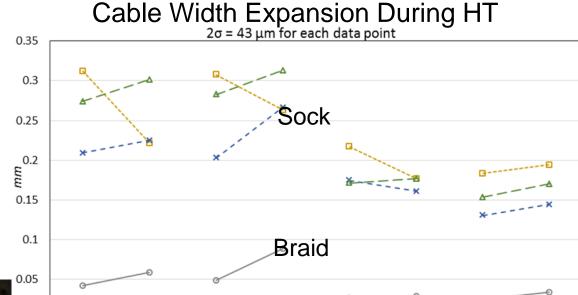


Coil Cross Section Analysis

from Image analysis and edge detection

 LARP coil 1, Turn location from Optical Coordinate
 Measurement Machine





HQ02 Cable Width Expansion

- Braided-on insulation constricts cable growth:
 - HQ17 has braided-on type insulation
 - All other coils use sock type insulation

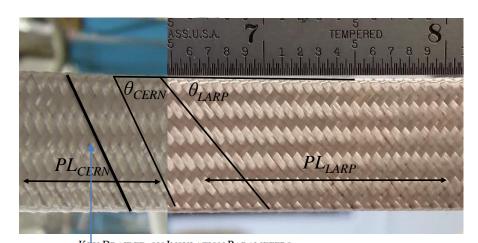
Loose Sock

--- HQ20 Average

HQ03

— HQ17 Average

TAMU3



- -× - HQ16 Average

0

Insulation and Cable Growth

- Insulation intimately contacts cable
- Thermal Expansion
 - S-2 Glass = $\sim 1.5 \cdot 10^{-6}$ °C
 - Niobium = $\sim 9 \cdot 10^{-6}$ $^{\circ}$ C
 - Copper = $\sim 17 \ 10^{-6}/^{\circ}C$
- From heat treatment:
 Volumetric expansion of Cable
 (3% 6%)
- The Insulation applies an axial and transverse pressure on the cable as the cable expands.
- The cable expansion is altered based on the insulation parameters

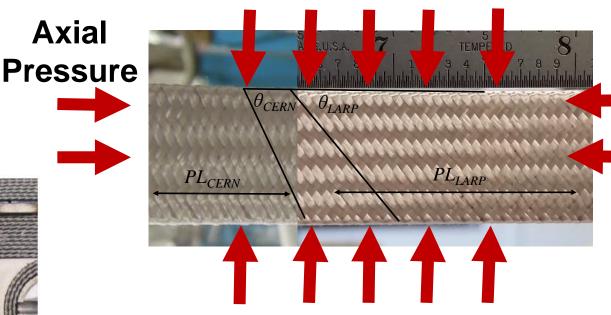
KEY BRAIDED	-ON INSULAT	TION PARAMET	ERS		
Parameter	HQ braid	MQXF Larp	MQXF CERN	units	TAMU3
# Carriers	48	48	32	-	128
Picks per inch (P/I)	28.2	18.3	21.6	-	-
Pitch Length (PL)	21.7	33.4	18.8	mm	-
Pitch angle (PA)	56.2°	49.7°	64.4°	-	~CERN
Insulation thickness	0.104	0.143	0.146	mm	.070
Width of Cable (W)	14.8	18.15	18.15	mm	13.4
Mid-thickness of Cable (T)	1.375	1.525	1.525	mm	1.25
# Plies / Strand	1	2	2	-	(204 fil/strand)
1 1 1	21 011	0.66 PETT 1:	000111		

A basket weave of AGY S-2 Glass fibers of 66 TEX with 933 high-temperature silane sizing was used for each type of insulation.

Insulation and Cable Growth

Axial

CERN Insulation preferentially constricts width growth and thus reduces length contraction

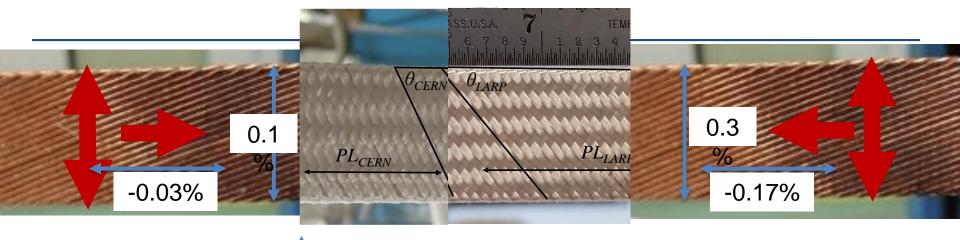

LARP Insulation with a smaller pitch angle and longer pitch length allows slightly more width growth and more length contraction.

> TAMU3 Gap

Picture 1: Gap between outer winding and spring of TAMU3b. See green

Transverse Pressure

		FREE HQ	Braid HQ	Free MQXF*	LARP MQXF	CERN MQXF	TAMU3
_	Cable Width expansion	1.8%	0.4%	1.3%	0.3%	0.1%	-
_	HT Coil Gap Closure	0.2%	0.01%	0.45%	0.16%	0.03%	-0.3%



*From Cable Expansion Experiments (I. Pong, D. Dietderich)

How does insulation affect cable growth?

Bare Cable:

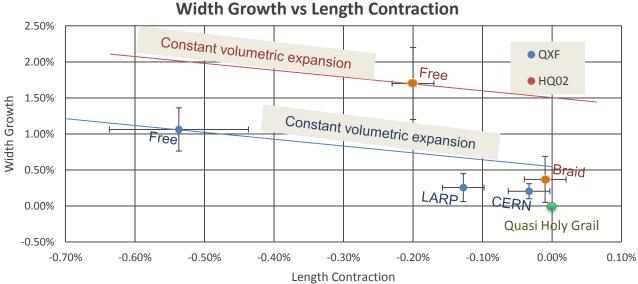
KEY RRAIDED-ON	INCLU ATION	DADAMETERS

Parameter	HQ braid	MQXF Larp	MQXF CERN	units	TAMU3
# Carriers	48	48	32	-	128
Picks per inch (P/I)	28.2	18.3	21.6	-	-
Pitch Length (PL)	21.7	33.4	18.8	mm	-
Pitch angle (PA)	56.2°	49.7°	64.4°	-	-
Insulation thickness	0.104	0.143	0.146	mm	.070
Width of Cable (W)	14.8	18.15	18.15	mm	13.4
Mid-thickness of Cable (T)	1.375	1.525	1.525	mm	1.25
# Plies / Strand	1	2	2	- (2	04 fil/strand)

A basket weave of AGY S-2 Glass fibers of 66 TEX with 933 high-temperature silane sizing was used for each type of insulation.

E. Holik, et al., "Fabrication and Analysis of 150-mm-Aperture Nb₃Sn MQXF Coils," *IEEE Trans. App. Supercond.*, vol. 26, no. 4, Jan 2016. (MT24)

- Cable Width is significantly altered by braided insulation
- Transverse pressure also reduces axial contraction





Engineering a cable/insulation system

A Serendipitous Finding: Braided-on insulation reduces expansion!!!

- Need to explore parameter space to best exploit insulation parameters in subsequent designs
 - Volumetric expansion is largely unaffected by insulation
 - Need to verify if insulation increases residual conductor strain
 - Current QXF design is locked for Hi-Lumi LHC despite accommodating more width growth than measured in cross section
 - Would be very risky to change design and reduce assumed expansion

Conclusions

- Braided on insulation constricts cable width growth and reduces length contraction during heat treatment.
 - Likely reduces risk for long length coils!
- Optimizing the insulation system may result in a zero-axial-expansion or zero-width expansion parameter space but not both...

