DE LA RECHERCHE À L'INDUSTRIE

Mechanical characterization setups at CEA

Maria Durante – CEA Paris-Saclay

Workshop on Nb₃Sn Rutherford cable characterization

for accelerator magnets

CIEMAT, Madrid – 17/11/2017

www.cea.fr

Mechanical characterization of impregnated stacks

• RT and 4K Young modulus mesurement,

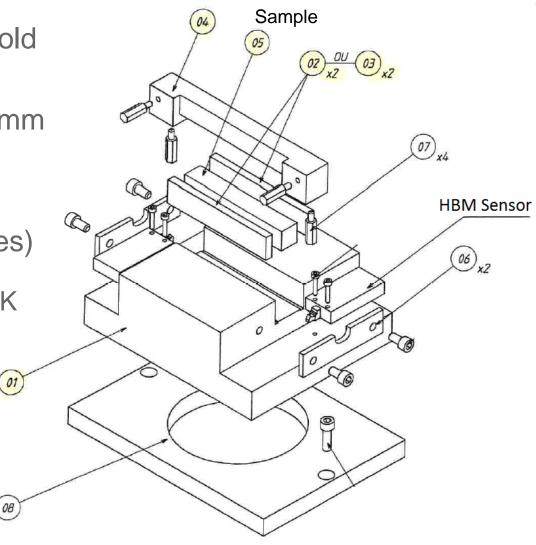
CONTENT

- Thermal shrinkage coefficient measurement,
- Stack preparation

Mechanical characterization of ceramic-insulated stacks

• Which sample for non impregnated stacks ?

- INSTRON Tensil/Compression machine 4206
- Calibrated INSTRON 2518 load cell 150 kN
- LHe cryostat



 A tensil machine with a load cell up to 300 kN will be equipped for this kind of measurement in the future

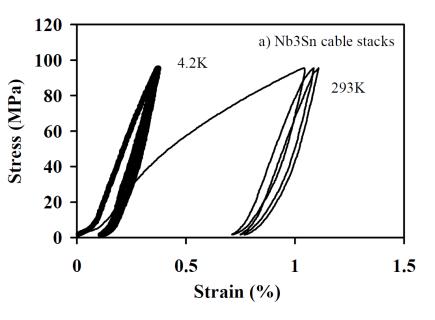
- U-shaped Stainless steel mold
- Stack width : from 12 to 22 mm
- Stack lenght up to 120 mm
- 2 HBM Sensors (strain gages)
 - +/- 2.5 mm
 - calibrated at RT, 77K and 4K

08


Setup and test procedures has been validated with reference metallic samples

Sample	Number of Tests	293 K
Copper	3	130 ±5
Titanium	3	115 ±1
S. Steel	5	220 ± 20

 The setup was used to characterize the Nb3Sn cable of CEA R&D Nb3Sn Quadripole model


Strand Diameter	Nb₃Sn Cable^a 0.825			
Number of Strands	36			
Cable Width (mm)	15.1			
Mid-Thickness (mm)	1.485			
Keystone angle	0.94°			
Cable Twist (mm)	101			
316 L core between the two strand layers of each cable				

- Cable insulated with a 15-mm-wide, 60-µm-thick quartz fiber tape (two layers without overlap).
- Reacted cable stacks vacuum-impregnated with epoxy resin (MY745 resin, HY905 hardener, DY072 and DY073 catalysts)

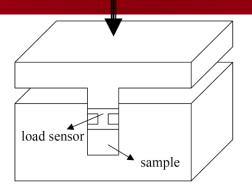
- Non-linear behavior for the first loading on a virgin stack
- Hysteresis between loading and unloading
- More or less stabilized after three loadings

Sample	Number of Tests	293 K	Number of Tests	4.2 K
Nb3Sn stacks	6	33 ±1	2	45 ±1
Resin	5	4.2 ±0.2	2	8.6 ±0.2

- 3 successive cycles, between 2.5 kN and 150 kN
- Displacement sensor zero reset at 2.5 kN to compensate small geometric defect of the samples
- Crosshead displacement speed of 0.2 mm/min

 Mold rigidity is measured before each test using a reference aluminum alloy bar

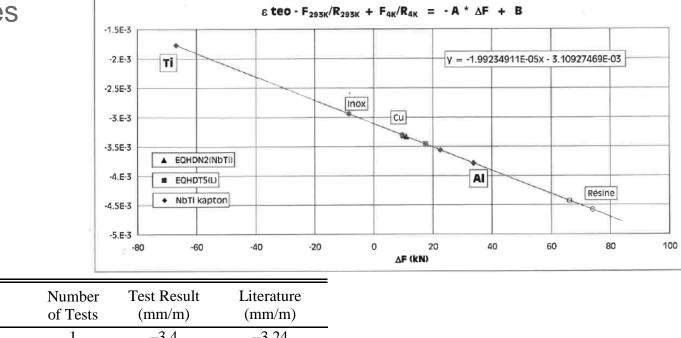



THERMAL SHRINKAGE COEFFICIENT

U-shaped stainless steel mold T-shaped upper plate bolted to the mold after having put the sample under compression

Load sensor : Stainess steel instrumented I beam

- 4 half bridges of strain gages
- 1 thermal compensation gage
- Stack width : 15.37 mm
- Stack lenght : 100 mm
- New mold and beam for wider cables is necessary



THERMAL SHRINKAGE COEFFICIENT

Al and Ti reference bars are use to determine the coefficient for the

other samples

~

Sample	of Tests	(mm/m)	(mm/m)	
Copper	1	-3.4	-3.24	_
S. Steel	1	-2.9	-3.06	
				_
Resin	2	-18.8 ± 0.1	-11.6	
			up to -14	 Integrated thermal shrinka
Nb ₃ Sn Stacks	2	-3.9 ±0.1	-3.50	•
			-3.30	between 293 K and 4.2 K
Impregnated NbTi Stacks	2	-3.8 ± 0.1	-3.55	
NbTi + Kapton Stacks		-4.96		_

age coefficient (

Maria Durante - Mechanical characterizaiton setup at CEA

STACK PREPARATION

Heat Treatment

- L shaped Reaction molds, screwed
- Cavity adapted to the cable dimensions
- Strands ends melted by TIG before heat treatment Impregnation
- Impregnation mold with ad-hoc insert
- Closed impregnation circuit to allow insertion and circulation of resin at low pressure
- Bladder for compression after resin insertion

Young modulus measurement

- Measurement setup is ready for tests
- New calibration of the HBM sensor is ongoing
- Next test campaign on MQXF, 11T and FRESCA2 cables

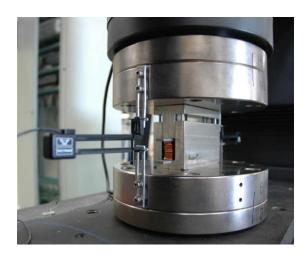
Thermal shrinkage coefficient

- The existing setup needs to be adapted for wider cables.
- Commissioning and validation of the new setup is foreseen by mid of next year.

CERAMIC INSULATED STACKS

Mechanical characterization of Nb3Sn cable with ceramic insulation

• Which samples for non impregnated cables ?


Short stack (S)

Long stack (L)

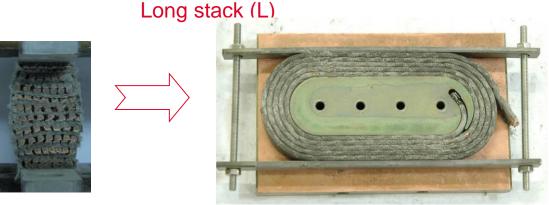
Experimental setup (RT)

- 300 kN load cell
- 2 symmetrical extensometers

Courtesy F. Rondeaux, P. Manil

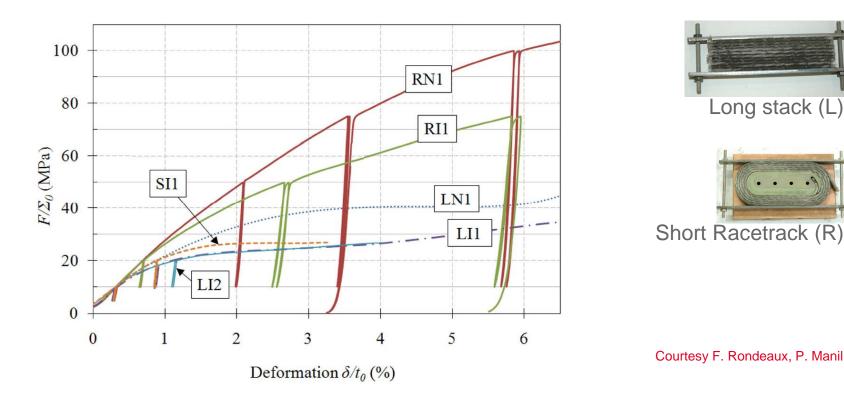
CERAMIC INSULATED STACKS

Mechanical characterization of Nb3Sn cable with ceramic insulation


• Which samples for non impregnated cables ?

Short stack (S)

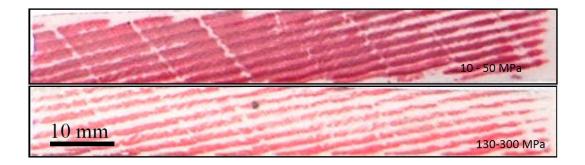
But : risk of cable untwisting



Short Racetrack (R)

Courtesy F. Rondeaux, P. Manil

Mechanical characterization of Nb3Sn cable with ceramic insulation


- Stacks limited to 25 Mpa (S) 40 Mpa (L)
- Racetrack configuration improves cable cohesion and stack rigidity

Short stack (S)

Mechanical characterization of Nb3Sn cable with ceramic insulation

- For pressures above 50 MPa, the ceramic insulation mechanical properties are insufficient and cracks appear.
- FUJI[™] Prescale film was used to evaluate the stress repartition on the sample surface : about 90 % of the contact surface sees pressures higher than 10 Mpa, BUT about 30 % of the surface reaches high stress over 130 MPa.

Courtesy F. Rondeaux, P. Manil