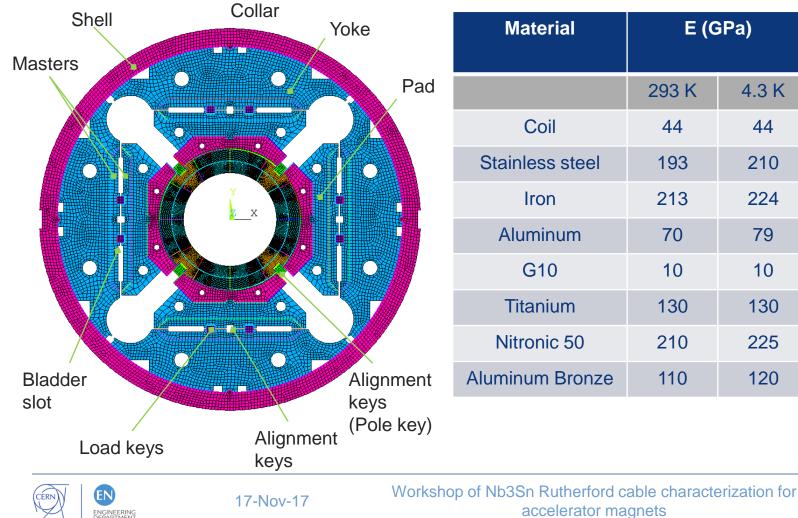
Measurement Devices for 10 Stacks Mechanical Characterization from RT down to 77 K

C. Fichera, M. Guinchard, Ó. Sacristán

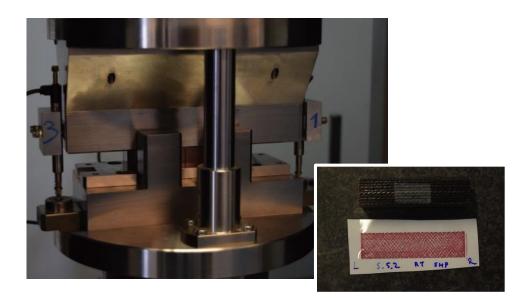
Outline


- Requirements
- Background
- Preliminary Studies
- Test Set-Up
- Validation Campaign
- Results
- Conclusions

Requirements

Cross-section MQXF

ENGINEERING DEPARTMENT


			ratio
	293 K	4.3 K	293 K/4.3 K
Coil	44	44	0.3
tainless steel	193	210	0.28
Iron	213	224	0.28
Aluminum	70	79	0.34
G10	10	10	0.3
Titanium	130	130	0.3
Nitronic 50	210	225	0.28
minum Bronze	110	120	0.3

Poisson's

Background

Measurements at RT and 77 K with capacitive gages calibration set-up in 2015.

OK for a first approximation, but...

- significant compliance (bigger than the cable deformation)
- difficult operation
- safety matters

suggest the development of an ad hoc setup for the campaign of tests.

Preliminary studies

In view of future characterization campaigns, preliminary studies combining FEM and experimental testing were launched in order to:

- evaluate the feasibility of upgrading the former capacitive gages calibration tooling;
- determine the most appropriate measurement technique;

- quantify the deflection of the tooling for the most usual sample sizes, and asses its impact in the measurements;
- determine the compliance of the tooling as a function of the rigidity of the tested material, and hence, if it is possible to apply a correction.

Preliminary Studies – Measurement Technique

- Are extensometers an appropriate tool for such measurements?
- Simulations depict important gradients of strain along the sample volume.
- This behavior has been experimentally verified with a laser extensometer.
- Most of the deformation takes place in the vicinity of the areas in contact with the testing machine.
- LVDT method provides an integrated measurement which partially overcomes this limitation.

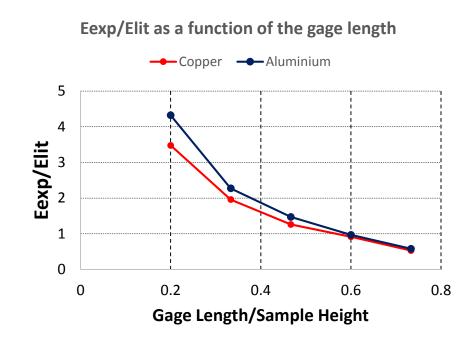
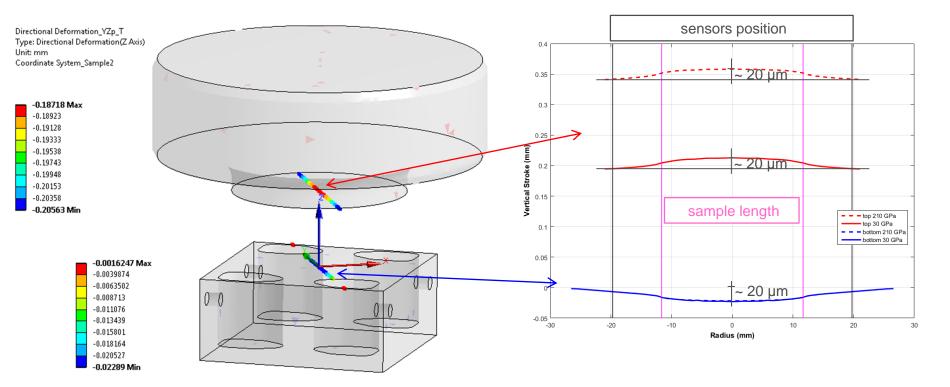
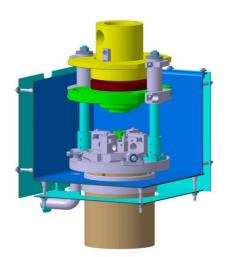


Image: Remain Surger Remain

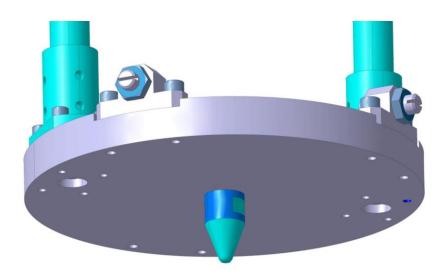


Workshop of Nb3Sn Rutherford cable characterization for accelerator magnets

Preliminary Studies - Profiles deformations - 1


• Expected deformation ~ 230 µm (H=18.9 mm)

Test Set-Up - Overview

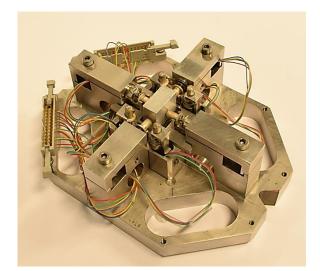

Zwick-Roell 400 kN UTM

Workshop of Nb3Sn Rutherford cable characterization for accelerator magnets

Bottom assembly

- Holds the sled
 - Rapid mounting
- Lifts it out of bath
- Centering pin in the bottom

Top assembly


- Ram for press head
 - Removable
- Spherical washer for centering the press
 - Perpendicular contact

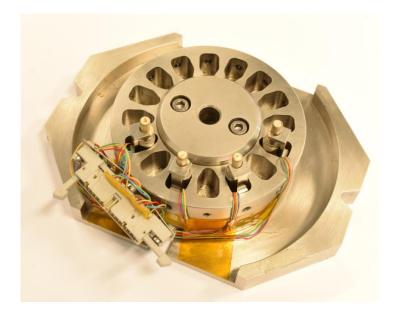
Test Set-Up – Removable Measuring Sled

- Sled is prepared away from the testing machine:
 - Easier to position sample and prepare sensors;
 - A set of 2 sleds allows a higher output rate in cryogenic measurements.

Centering Mask

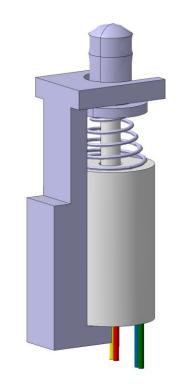
- Measuring plate acts as the anvil
- Holds vertical sensors

• Changing the sled allows greater flexibility in terms of possible types of measurements: bending tests, shear tests, custom set-ups, etc.

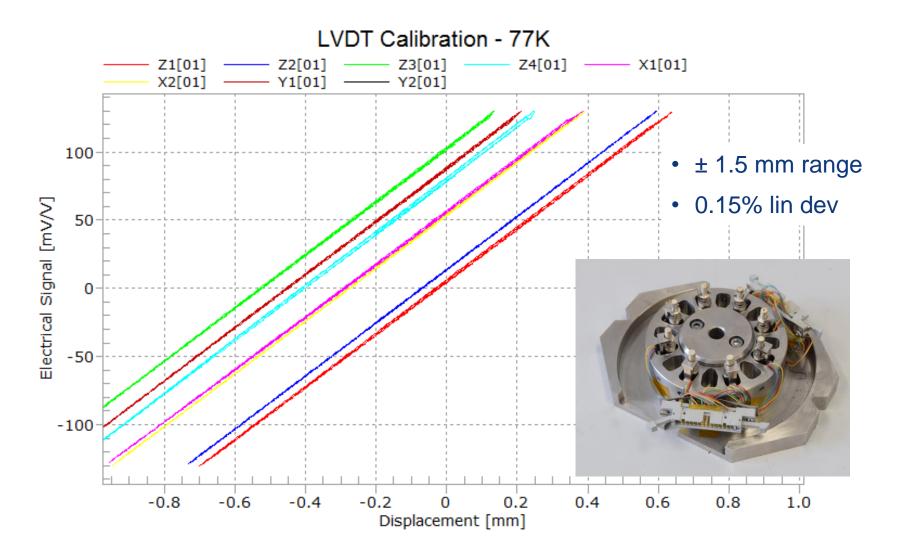

Test Set-Up – Removable Measuring Sled Sled changing procedure

Test Set-Up – Calibration Sled

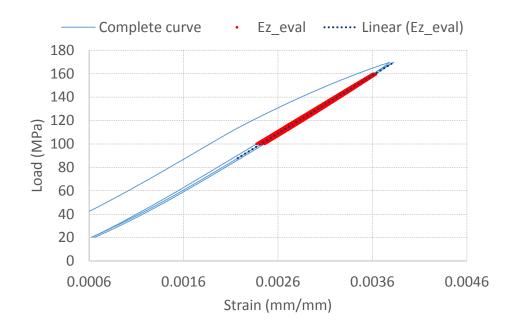
- Allows the simultaneous calibration of up to 16 sensors.
- Crytical in cryogenic temperatures.



Workshop of Nb3Sn Rutherford cable characterization for accelerator magnets


Test Set-Up - Sensors

- Sensorex SX9W03 Miniature LVDT Sensor
- Proved efectiveness at 4k and 77k
- ± 1.5 mm range
- ± 0.15% Linearity deviation
- Forks keeps the sensor together
- Sensor is locked in place by pressing on the fork with a set screw



Validation Campaign - LVDTs Calibration

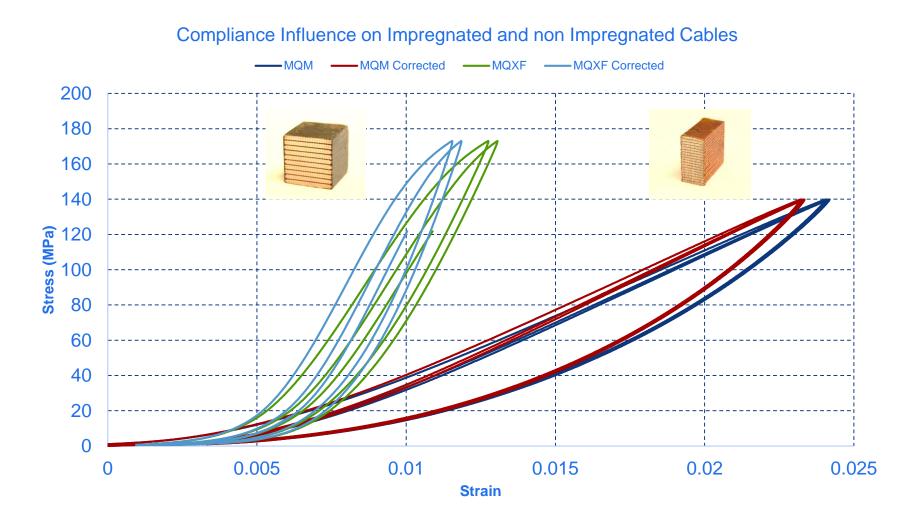
Validation Campaign - Tooling Compliance Determination

Correction equation:

 $D_{Corr} = D_{Exp} - (Corr \times Stress)$

$$D_{Tool} = \overline{D}_{Exp} - D_{The}^{*}$$

 \overline{D}_{Exp} : AVG experimental deflection


 D_{The} : Sample deflection according to E

*Considered a region comprised between 100 and 160 MPa to avoid bending and alignment effects.

Deflection (µm/MPa)					
Material	RT	Cryo			
G10	0.085	-			
AI	0.091	0.081			
Cu	0.098	0.086			
AVG (Corr)	0.091	0.083			
Max Dev (%)	5	2			

Results and compliance

Conclusions

- A test rig for compression tests was developed, characterised and validated for stiffness measurements;
- Several test campaigns have been performed so far for 11T and MQXF. A campaign is ongoing for MQM;
- The compliance of the tooling becomes critical when measuring stiffer samples;
- A proper documentation of the tests is of paramount importance for the future exploitation of the data.

Thermal Analysis

17-Nov-17

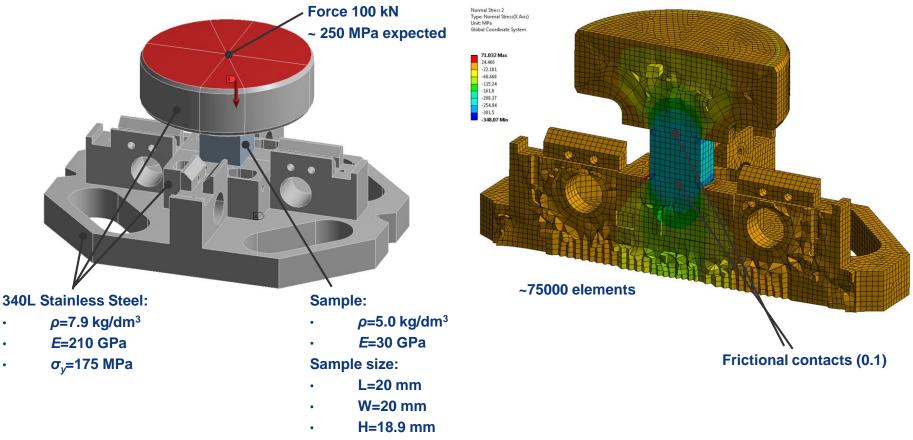
- Thermal analysis has not yet extensively explored for the study of the cables.
- Possibility to obtain interesting data both in the high temperatures range (reaction and impregnation) and low temperatures range (thermal contraction).
- The laboratory is already equipped for the determination of :

Thank you

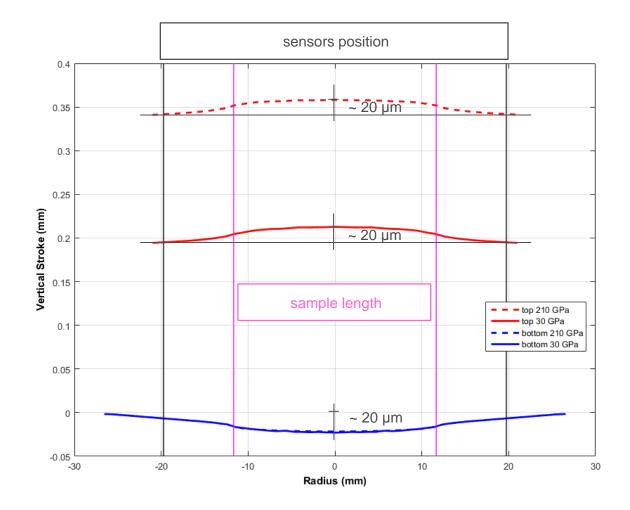
Test Set-Up - Sample Sizes

- Max sample size
 - Length 32mm
 - Width 24mm
 - Height 20mm

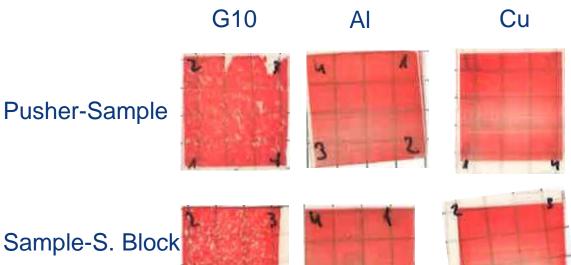
- Min sample size
 - Length 15mm
 - Width 10mm
 - Height 15mm


- 11 Tesla sample size
 - Length 20mm
 - Width 15mm
 - Height 15mm
- MQFX sample size
 - Length 20,00mm
 - Width 18,70mm
 - Height 18,85mm

- Max Volume = 32*24*20=15360 [mm³]
- Min Volume = 34*20*15=10200 [mm³]


Preliminary Studies - FE analysis

Preliminary Studies - Profiles deformations - 2



Validation Campaign - Pressure distribution

Base-Tooling

Pusher-Sample

Sled-Supporting Block

- No particular issues on low rigidity samples
- Sample geometry is very relevant for Cu

Validation Campaign - Characterization of the tooling

Test conditions:

Preload: 20 MPa Load rate: 3 MPa/s Load program: 3 loading-unloading

Sample Geometries: MQXF: Ho=18.7 L=19.98 W=18.85 11T: Ho=15 L=15 W=15

	Room Temperature					77K		
G10	n tests	e	L	G	e	~	uc	
AI	Pressure distribution tests	3 samples 0°, +180° sample	Dismount-Clean	LVDT Calibration	3 samples 0º, +180º sample	Specific Tests	LVDT Calibration	samples 180° sample
Cu	Pressure	°0°	Disr	LVD	°°	Sp	LVD	3 samp 0°, +180°

Study of the tooling compliance, repeatability and reproducibility of the measurements.

Validation Campaign – Uncertainty Determination

Uncertainty Budget

	Measurement		Uncertainties					
Sources of uncertainty	Measurement affected	Units	Meas. Uncertainty %	Туре	Distribution	Divisor	ci	
	F	N	0.50%	в	Normal	2	$\frac{H_0}{A_0\Delta H}$	
Loadcell	F	IN	0.50%	D	Normai	2		
LVDTs	3	m	0.3%	В	Normal	2	$\frac{\Delta P H_0}{A_0 \Delta L^2}$	
						1.73205	ΔP	
Micrometer Lo	Ho	m	negl	В	Rectangular	1	$\overline{A_0 \Delta H}$	
						1.73205	ΔPH_0	
Micrometer Area	А		0.2%		Rectangular	1	$A_0^2 \Delta H$	

$$U_{E_m} = \sqrt{\left(\frac{\partial E}{\partial \Delta P}\right)^2 U_{\Delta P}^2 + \left(\frac{\partial E}{\partial H_0}\right)^2 U_{Ho}^2 + \left(\frac{\partial E}{\partial \Delta H}\right)^2 U_{\Delta H}^2 + \left(\frac{\partial E}{\partial A_0}\right)^2 U_{A_0}^2}$$

$$U_{E_m} = \sqrt{\left(\frac{H_0}{A_0 \Delta H}\right)^2 U_{\Delta P}^2 + \left(\frac{\Delta P H_0}{A_0 \Delta L^2}\right)^2 U_{H_0}^2 + \left(\frac{\Delta P}{A_0 \Delta H}\right)^2 U_{\Delta l}^2 + \left(\frac{\Delta P H_0}{A_0^2 \Delta H}\right)^2 U_{A_0}^2}$$

Where:

 ΔP = load increment in the segment considered

 A_0 = cross section

 ΔL = extension increment in the section considered H_0 = gauge length

This leads to an expanded uncertainty of 4 GPa with k=2*

*for the usual sample geometries

Workshop of Nb3Sn Rutherford cable characterization for accelerator magnets