
DE LA RECHERCHE À L'INDUSTRIE

Cable Dimensional Changes Studies at CEA

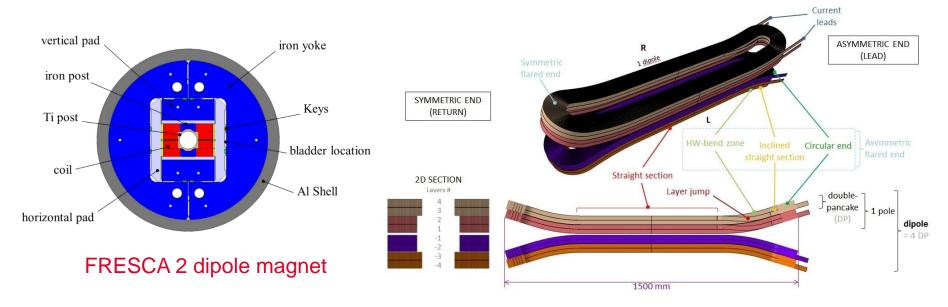
Maria Durante – CEA Paris-Saclay

Workshop on Nb₃Sn Rutherford cable characterization

for accelerator magnets

CIEMAT, Madrid – 17/11/2017

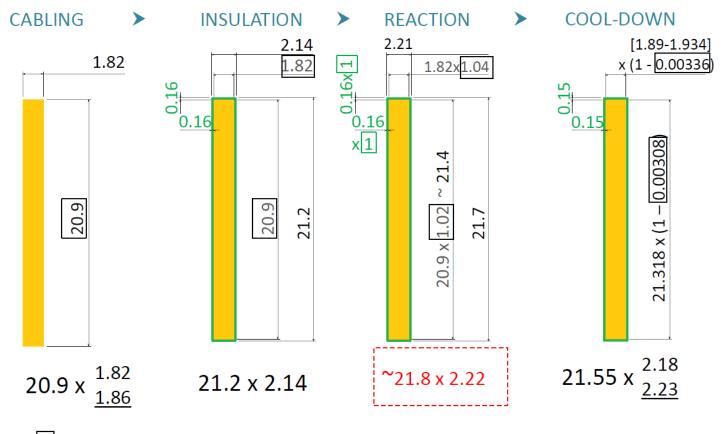
www.cea.fr



- Framework
- Cable Dimensional Changes Studies at CEA
 - Reduced scale dimensional change test setups
 - FRESCA2 experience

FRAMEWORK

 R&D program on dimensional changes studies started during FRESCA2 design phase


• The initial goal was to have a small test setup, able to check cable behavior during the heat treatment and give rules to be applied on the engineering design of FRESCA2 manufacturing tools

DE LA RECHERCHE À L'INDUSTRI

FRESCA2 CABLE

Assumed cable behaviour: +4% in thickness +2% in width

X means 'fixed' X means 'most likely option'

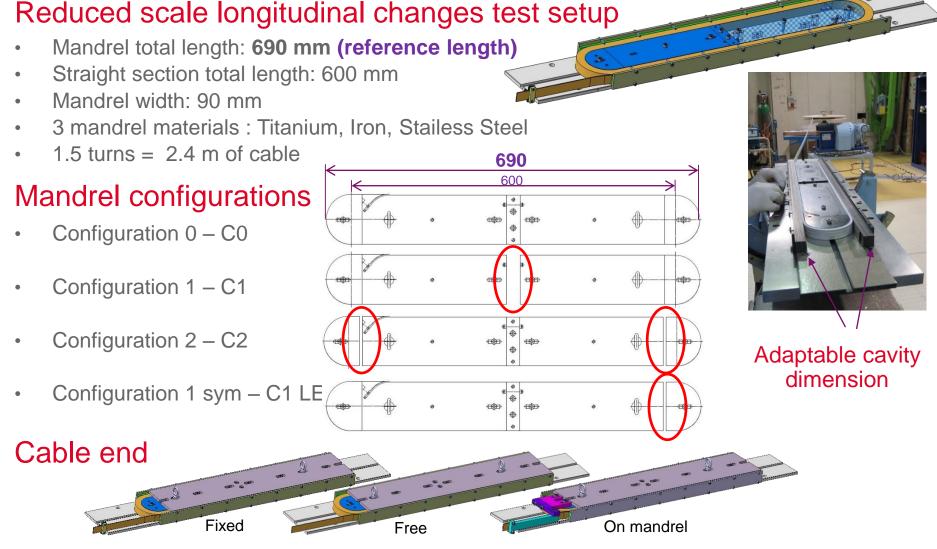
Maria Durante - Cable Dimensional Changes Studies at CEA

DIMENSIONAL CHANGES - THICKNESS

Test campaign on FRESCA2 PIT and RRP cables stacks Bare cable

RRP Cable

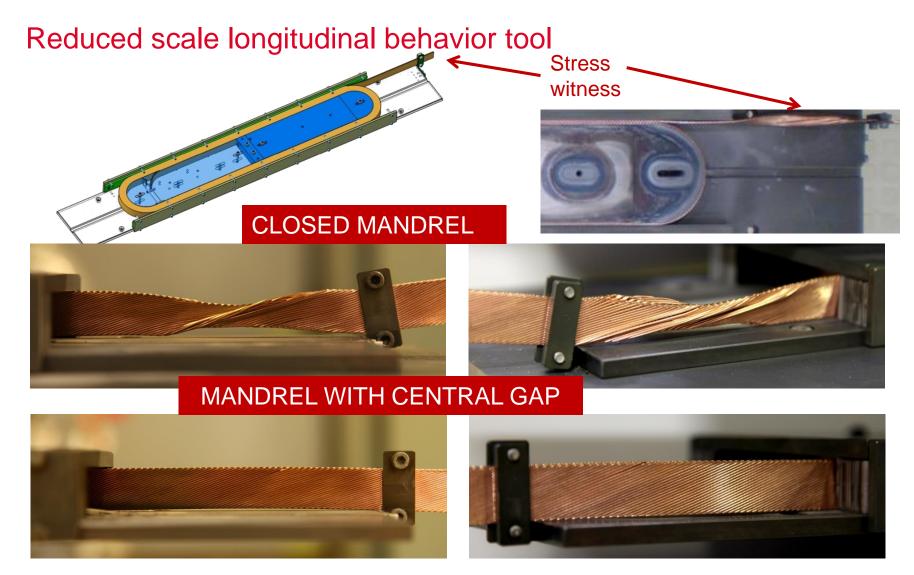
TEN STACK	HT (CAVITY)	Thickness @5MPa	Thickness increase / 1.82
SRNNN02	no	1.834 mm	
SRNTN02	Yes (26.5%)	1.873 mm	2.91%
SRNTN03	Yes (26.5%)	1.872 mm	2.86%
SRNTN04	Yes (4%)	1.877 mm	3.13%


PIT Cable

TEN STACK	HT (CAVITY)	Thickness @5MPa	Thickness increase / 1.82
SPNNN02	no	1.831 mm	
SPNTN02	Yes (26.5%)	1.889 mm	3.79%
SPNTN03	Yes (26.5%)	1.883 mm	3.46%
SPNTN04	Yes (4%)	1.881 mm	3.35%

- Stacks prepared and reacted at CEA
- Thickness measurements under 5 MPa done at CERN

Nominal expansion factor 4% in FRESCA2 tools design validated

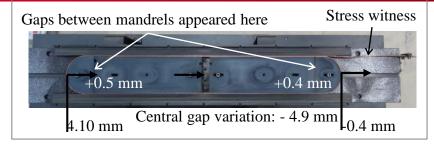

DIMENSIONAL CHANGES - LONGITUDINAL

Maria Durante - Cable Dimensional Changes Studies at CEA

FIRST TESTS ON BARE CABLE

Maria Durante - Cable Dimensional Changes Studies at CEA

FIRST RESULTS WITH BARE PIT CABLE


PIT Bare Cable

Mandrel material	C1 1 central gap	Gap reduction % LSS		C2 (*C1 LE) 2 head gaps *1	Gap red % L	
Iron	HT1	5.83 mm	0.97%	HT2	5.22 mm	0.87%
Stainless steel	HT2	6.73 mm	1.12%	HT3	8.02 mm	1.34%
Titanium	HT2	5.50 mm	0.92%	НТ3	7.94 mm	1.32%

Tests on non insulated cable Attention only on central gap reduction % on Straight Section Cez

FIRST RESULTS WITH BARE RRP CABLE

RRP Bare Cable

Mandrel material	C1 1 central gap	Gap reduction		L SS = 600 mm % L SS	L TOT = 690 mm % L TOT (head to head)	L cable = 741.4 mm % L cable
		Central gap	4.73 mm	0.79%	0.69%	0.64%
	HT5	Total gap (central - lateral)	3.93 mm	0.66%	0.57%	0.53%
Titesium		Central gap	4.55 mm	0.76%	0.66%	0.61%
Titanium	HT6	Total gap (central - lateral)	3.84 mm	0.64%	0.56%	0.52%
	Central gap	4.89 mm	0.82%	0.71%	0.66%	
	HT10	Total gap (central - lateral)	3.97 mm	0.66%	0.58%	0.54%

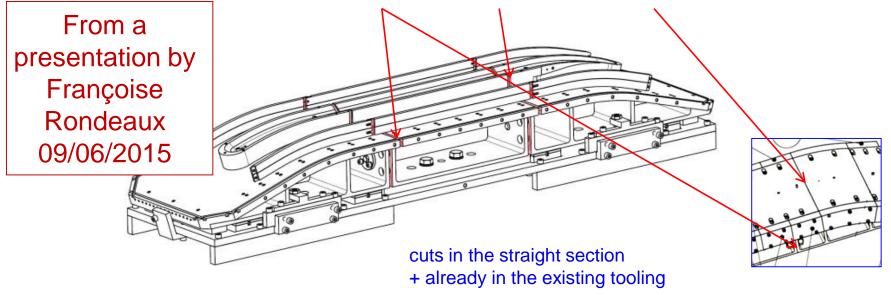
Maria Durante – Cable Dimensional Changes Studies at CEA

cea

FRESCA2 WINDING AND REACTION TOOLS MODIFICATION

Maria Durante – Cable Dimensional Changes Studies at CEA

Winding / reaction tooling in 3 parts



In subscale reaction tests, axial contraction = 0.5-0,7% with RRP cables (\Leftrightarrow 4 – 9 mm) 0,8-1.5 % with PIT cables

To manage the length's variation of conductor during heat treatment (using tooling in one part is risky because stress induced on the Nb₃Sn filaments)

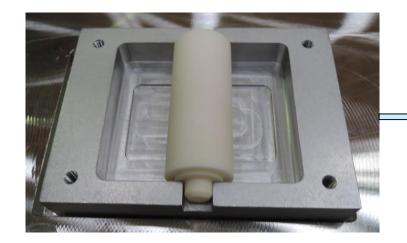
→ Modified winding / reaction tooling : in 3 parts

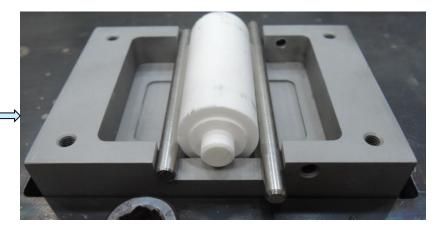
- Solution could be applied for production of longer coils
- \circ $\,$ 3 zones of cut : winding table / post and rails / reaction mould

Winding / reaction tooling in 3 parts

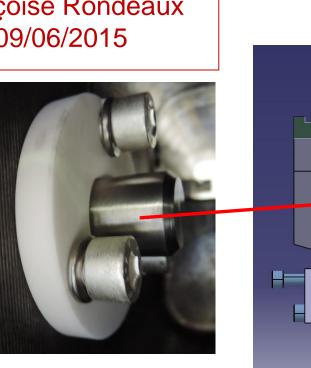
From a presentation by Françoise Rondeaux 09/06/2015

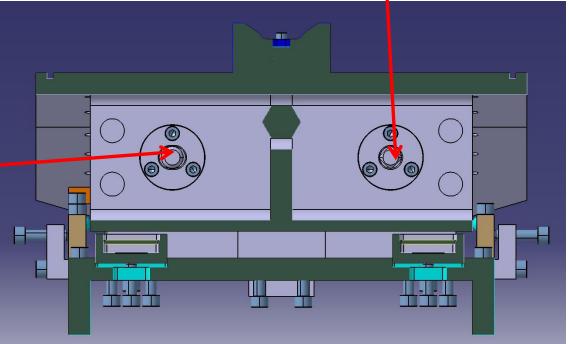
Maria Durante - Cable Dimensional Changes Studies at CEA


CIEMAT, 17 November 2017



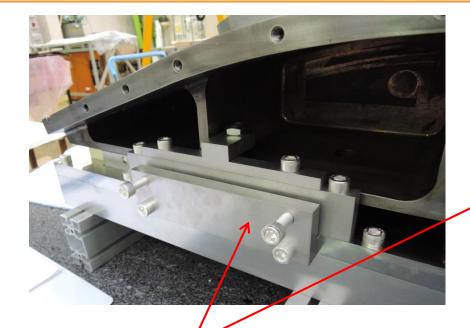
Support for lateral blocs of the table

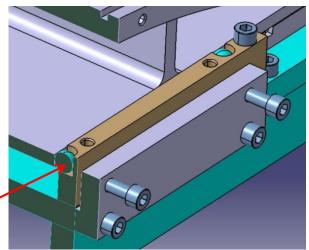

DP3402 : allow axial movement


Axial guiding

- Axial guiding : guiding rings
 - Ceramic in DR3401
 - Stainless steel in DR3402 and DP3401
 - None in DP3402

From a presentation by Françoise Rondeaux 09/06/2015

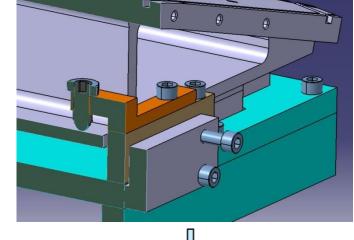




Lateral guiding

Lateral guiding system with balls (DR3401, DR3402)

- \rightarrow 2 layers of mica + 0,1 mm gap (DP3401)
 - →longer guiding plates (DP3402)


From a presentation by Françoise Rondeaux 09/06/2015

Vertical guiding

Vertical stop with ball screw (DR3401, DR3402)
→ 2 mica sheets + 0,1 mm gap (DP3401)
→ plate + 2 mica sheets + 0,1 mm gap (DP3402)

From a presentation by Françoise Rondeaux 09/06/2015

Tests

- Assembly test with CC3401 + CC1201 :
 - Small adjustment required for the posts
 - Intercoil shim preparation
- Full scale dilatation tests with cut tooling:

From a presentation by Françoise Rondeaux 04/09/2015

(tooling modifications between tests to reduce identified frictions)

	Jeu	initial	Variation		
	sym	asym	sym	asym	totale
DR3401	9,72	5,93	-1,91	-1,36	-3.27
DR3402	1,77	1,2	-0,6	-0,4	-1.0
DP3401	2,4	1,6	-1,1	-0,5	-1.6
DP3402	2,4	1,62	-0,49 (*)	0,31(*)	-0.18
(*) Sur DP3402, les jeux se sont équilibrés, ~1.9 mm de chaque côté.					

Maria Durante - Cable Dimensional Changes Studies at CEA

CIEMAT, 17 November 2017

Tests


Decision for the Nb₃Sn coils (FRESCA2 Technical Meeting 09/06/2015):

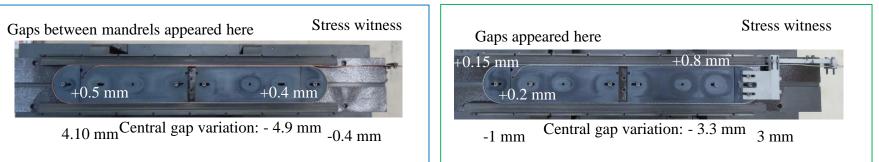
Gaps = 1 + 1 mm, closed before closing of the reaction mould

Post-coil gaps closed after reaction



From a presentation by Françoise Rondeaux 04/09/2015

After closing the gaps



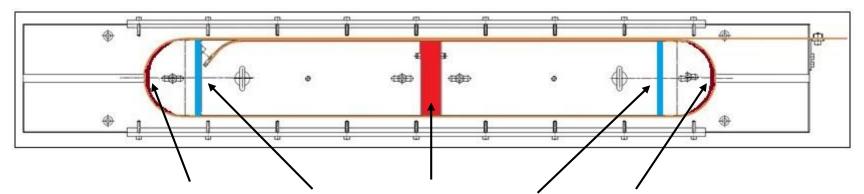
DIMENSIONAL CHANGES - LONGITUDINAL

20 heat treatments have been carried out during the whole campaign

- 7 HT (17 coils) on different PIT bare cables
- 5 HT (8 coils) on PIT insulated cable
- 3 HT (3 coils) on RRP bare cable
- 5 HT (8 coils) on RRP insulated cable

Mandrel	C1	Ends	Tatal Gap variation	L TOT = 690. mm
material	one central gap	Fixed/Free/on mandrel	(central - ends)	% L TOT
	Bare cable HT5	Fixed	-4.03 mm	-0.58%
	Bare cable HT6	Fixed	-3.84 mm	-0.56%
	Bare cable HT10	Fixed	-4.05 mm	-0.59%
Titanium	Insulated cable HT11	Fixed	-2.48 mm	-0.36%
	Insulated cable HT14	on mandrel	-2.21 mm	-0.32%
	Insulated cable HT19	on mandrel	-2.52 mm	-0.36%
	Insulated cable HT18 - 2 turns	on mandrel	-3.10 mm	-0.45%
Iron	Insulated cable HT16	on mandrel	-2.25 mm	-0.33%
Iron	Insulated cable HT18	on mandrel	-2.38 mm	-0.35%

Maria Durante – Cable Dimensional Changes Studies at CEA



Mandrel	C1	Ends	Total Gap variation	L TOT = 690. mm
material	one central gap	Fixed/Free/on mandrel	(central - ends)	% L TOT
	Bare cable HT7	Fixed	-4.36 mm	-0.63%
	Insulated HT12	Free	-2.06 mm	-0.30%
Titanium	Insulated HT13	on mandrel	-2.28 mm	-0.33%
	Insulated HT15	on mandrel	-1.93 mm	-0.28%
	Insulated cable HT17	on mandrel	-2.18 mm	-0.32%
	Insulated cable HT21 - 2 turns	on mandrel	-1.86 mm	-0.27%
lase	Insulated 1.82 mm thick HT13	on mandrel	-1.67 mm	-0.24%
Iron	Insulated 1.82 mm thick HT20	on mandrel	-1.72 mm	-0.25%

DE LA RECHERCHE À L'INDUSTR

Cea

HT WITH STEPS 210°C / 400°C / 650°C

TT RRP #19-1	Conductor/mandrel RE	Ends gap RE	Central gap	Ends gap LE	Conductor/mandrel LE	Total gap (central - lateral)
Après palier à 210°C	< 0.04	< 0.04	-3.00	< 0.04	0.20	-2.82
Après palier à 400°C	< 0.04	< 0.04	-4.75	0.20	0.40	-4.17
Après TT complet	0.25	< 0.04	-4.53	1.78	< 0.04	-2.52
TT PIT #22-1	Conductor/mandrel		Central gap	Ends gap LE	Conductor/mandrel	Total gap (central - lateral)
	RE	RE	2.45		LE	2.44
Après palier à 210°C	0.00	< 0.04	-2.45	0.04	< 0.04	-2.41
Après palier à 400°C	0.15	< 0.04	-3.40	0.25	< 0.04	-3.00
Après TT complet	< 0.04	0.38	-3.15	0.55	0.05	-2.17

CONCLUSIONS

- Insulation has an important impact on cable behavior
 - Coil length contraction 50% smaller for insulated cable
 - Final cable, final insulation must be used
- Similar behavior for **RRP and PIT cables**
 - Slightly lower contraction for PIT cable
- Similar behavior for Titanium and Iron mandrels
 - But Iron mandrel is softer, higher risk for errors
- Impact of **number of turns** not clear.
- A large part of cable contraction seems to occur in the first part of the heat treatment (up to 400°C); then the cable grows due to Nb3Sn formation.

- Standard Test procedure has been validated
 - Titanium mandrel
 - 2 turns
 - Conductor end fixed on the end mandrel

- Measurement of the longitudinal contraction during heat treatment of Nb₃Sn cables in coil configuration
 - 2 x 4 m of insulated cable needed
- Measurement of the cable thickness under 5 MPa before
 and after heat treatment
 - 2 stacks per cable
 - 4 m of insulated cable needed
- Measurement of the cable thickness and width after reaction, by image analysis of a stack section after impregnation and surface polishing.
 - Image analysis at CERN

