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Introduction
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• Magnet mechanical models are continuously used for a variety of tasks. 

– E.g.: verify structural integrity, increase understanding of magnet mechanics, 

define magnet prestress, design in general…

• Model rely somehow heavily on the assumptions made on coil behaviour

• Direct strain measurements on the conductor are considered unreliable:

– Strain measured somewhere else → Conductor strain extracted from FE

– This relies on the correct knowledge of the cable/coil mechanics…

• Nb3Sn strands are prone to critical current degradation under the effect of 

mechanical strains

– Degradation can be produced both with axial and transverse strains

– Knowledge of the impregnated cable/coil mechanical properties is then a 

necessary information to avoid magnet degradation



Modelling Strategies
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• Block model is the current standard approach:

– Coil approximated as an uniform block with uniform mechanical properties

– Properties were measured in the past on impregnated coil stacks

– Orthotropic in 2D, isotropic in 3D

• This consistent way of modelling also allowed to define an empirical limit on the 

coil equivalent stress (150:200 MPa - H. Felice et al., IEEE TAS, 2011)

• New modelling strategies are currently under development 

Cable Model

C. Löffler et al., EUCAS 2017

Strand Model

M. Daly et al., MT25, 2017
Block Model
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MQXF – Mechanical Structure
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• Azimuthal preload at R.T. applied with bladders & keys

• Al shell compresses the coils. Part of the force is absorbed by the pole key

• Longitudinal preload at r.t. applied pre-tensioning the rods

• Both increased by the differential thermal contraction during cool-down



MQXF Mechanical Model
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• Coil modelled as a block. Simulations in 2D and 3D.

• Coil properties from LARP experience:

• Elastic modulus (linear elastic): 44 GPa (azimuthal), 52 GPa (radial)

• Thermal contraction: 3.35 mm/m



Mechanical Model
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Loading

Cool-Down

• Mechanical structure was tested with aluminium dummy coils

• Transfer Function: force provided by the structure vs coil prestress

• Very good agreement with the numerical model results

• No calibration was performed



Short Model - Strain Gauge Locations
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Shell

Pole



Prestress analysis:

• Prestress variation: ±𝟏𝟕𝑴𝑷𝒂
• Does this set a threshold on expected 

model precision?

• Model result is out of the meas. Uniformity

• Pole stress at warm lower
• Lower prestress increase during CD

• Stress after CD lower than expected on 
both shell and coil

• The mechanical models experience 
suggests that the distance between model 

and measurements is due to the coil 
properties used.

Pole
Shell

MQXFS1 – Transfer Function

Loading

Cool-Down
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Coil Properties – Available Data

• Available coil properties measures highly dispersed

• Measured Young modulus: 15-60 GPa. Also depends upon cyclic/monotonic 
loading phase

• Measured thermal contraction: 2-4 mm/m

Y – azimuthal

X – radialZ – longitudinal
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Azimuthal Pre-stress

Pole
Shell

• Parametric analysis, fixed shell strain at warm:

• RT → E: 44 GPa → 20 GPa

• CD → α: 3.36 mm/m → 3.88 mm/m

• One could repeat the same process for other 

magnets. But not in the design phase!
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Cable Stacks – FE Model (1)
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• 2D FE model of the cable stack

• Material properties from literature

• Geometry from a mix of image analysis and 
simple geometric formulas to match the filling 

factor, copper-non copper etc. 



Cable Stacks – Transversal Pressure (1)
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• Measurements on stacks of impregnated cables have always been used as a 
reference for coil elastic modulus measurements

• There is a significant spread (15-50 GPa, azimuthal direction) in the values 
available in literature

– The modulus seems sensible to the particular cable tested/testing procedure

• As a consequence, an extensive campaign was launched almost 2 years ago

Work to be published by C. Fichera et al.



Cable Stacks – Transversal Pressure (2)
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• The specimen (MQXF RRP cable) shows a clear division in three zones:

– Virgin loading (black)

– Unloading (red)

– Cyclic loading (blue)

• How to extract a number representative of the modulus from such a result?



Cable Stacks – Transversal Pressure (3)
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• Very different behaviour in the three phases

• The elastic modulus (slope) varies continuously 

during the test

• Probably difficult to condensate the coil elastic 

properties in a single number (elastic modulus)



Cable Stacks – FE Model (2)
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• Virgin/cyclic behaviour explained by 

copper plasticization

• FE slope reasonably good especially 

considering that no model calibration was 
necessary

• Initial phase may be due to compaction



MQXF – Strand Model
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• Strand MQXF magnet model. Same approach as before // work in progress!

– Pros: 

• Useful to verify the strain inside the strand

• We are not relying on properties measured on the stacks

– Cons:

• We have extensive experience with block models

• Even a 2D model can become computationally heavy

• Strand model results at R.T. in agreement with measurements/block model

• No calibration done!
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Conclusion (1)
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• MQXF FE model calibration:
• Good agreement at the macroscopic level

• The same approach could be used on other magnets (different 

cable, resin, etc.). Not feasible at the design stage!

• Impregnated cable stacks:

• Strongly non-linear behaviour

• Part of this behaviour can be explained by the copper 

plasticization (and compaction)
• Cable components properties available in literature

• Stack strand model looks reasonably close to reality

• FE Model at the strand level allows to match the RT transfer function

• Further comments:

• Available data on cable stacks is quite confusing

• Thermal contraction measurements?

• What level of detail do we really need?
• Should we use orthotropic non-linear material laws? How do we 

do this in 3D (ends)?
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Extra



MQXF Design
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• LHC IR upgraded as a part of HiLumi project

– Quadrupoles: NbTi → Nb3Sn

• Target: 132.6 T/m

– 150 mm coil aperture, 11.4 T Bpeak

• Q1/Q3 (by US-AUP Project)

– 2 magnets MQXFA with 4.2 m

• Q2a/Q2b (by CERN)

– 1 magnet MQXFB with 7.15 m

• Different lengths, same design

• Short Models (MQXFS)

– 3 models tested up to now

– Magnetic length 1.2 m



MQXFS1 – Material Calibration
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• Parametric analysis:

• Coil Young Modulus

• Coil Thermal Expansion

• Current Parameters:

• 𝐸 = 44 𝐺𝑃𝑎
• 𝛼 = 1.16 ∗ 10−5 𝑚𝑚/K

• The shell strain at warm is 

imposed

• It is possible to match the overall 

behaviour. Best parameters:

• 𝐸 = 20 𝐺𝑃𝑎
• 𝛼 = 1.35 ∗ 10−5 𝑚𝑚/𝐾
• 3.34 mm/m → 3.88 mm/m



AT1 – Material Calibration
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• Best stress calibration parameters does not coincide with strain ones.

• Possible improvement:

• Orthotropic Coil behaviour

• Friction parametric study



Mechanical Model Validation
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