

WG1 VH experimental report

LHCHXSWG general assembly March 26th 2018

Outline

- Brief discussion of the ATLAS and CMS results
 - VH(bb) signal strength @ 13 TeV
 - Systematic Uncertainties
 - Simple prospects for single analysis
- VH signal systematic uncertainties
- V+jets background modeling strategies
 - W+heavy flavors dominated by 1-lepton channel
 - Z+heavy flavors dominated by (0)2-lepton channel
- Towards simplified Template XS

VH(bb) signal strength @ 13 TeV

Latest results with 2016 dataset in a nutshell

ATLAS

$$\mu = 1.20^{+0.24}$$
{-0.23}(stat)^{+0.34}{-0.28}(syst)

Systematic Uncertainties

Latest results with 2016 dataset in a nutshell

CMS

		Individual contribution	Effect of removal to
Source	Type	to the μ uncertainty (%)	the μ uncertainty (%)
Scale factors (tt̄, V+jets)	norm.	9.4	3.5
Size of simulated samples	shape	8.1	3.1
Simulated samples' modeling	shape	4.1	2.9
tagging efficiency	shape	7.9	1.8
et energy scale	shape	4.2	1.8
Signal cross sections	norm.	5.3	1.1
Cross section uncertainties	norm.	4.7	1.1
(single-top, VV)			
et energy resolution	shape	5.6	0.9
tagging mistag rate	shape	4.6	0.9
ntegrated luminosity	norm.	2.2	0.9
Unclustered energy	shape	1.3	0.2
Lepton efficiency and trigger	norm.	1.9	0.1
5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	cale factors (tt, V+jets) ize of simulated samples imulated samples' modeling tagging efficiency et energy scale ignal cross sections Cross section uncertainties (single-top, VV) et energy resolution tagging mistag rate integrated luminosity Unclustered energy	cale factors (tt, V+jets) norm. ize of simulated samples shape imulated samples' modeling shape tagging efficiency shape et energy scale shape ignal cross sections norm. Cross section uncertainties (single-top, VV) et energy resolution shape tagging mistag rate shape ntegrated luminosity norm. Juclustered energy shape	to the μ uncertainty (%) cale factors (tt, V+jets) cale factors (page 4.1) cale factors (page 4.1) cale factors (tt, V+jets) cale factors

CMS	1.19 ^{+0.21} _{-0.20} (stat) ^{+0.34} _{-0.32} (syst)
ATLAS	1.20 ^{+0.24} _{-0.23} (stat) ^{+0.34} _{-0.28} (syst)

ATLAS

Source of un	certainty	σ_{μ}
Total		0.39
Statistical		0.24
Systematic		0.31
Experimenta		
Jets	0.03	
$E_{ m T}^{ m miss}$		0.03
Leptons		0.01
	b-iets	0.09
b-tagging	177	0.04
o tubbing		0.04
	extrapolation	0.01
	•	
Pile-up		0.01
Luminosity		0.04
Theoretical a	nd modelling un	certainties
Signal		0.17
_	nalisations	0.07
		0.07
		0.07
$t\bar{t}$		0.07
Single top qu	0.08	
Diboson	0.02	
Multijet	0.02	
MC statistica	0.13	
	Total Statistical Systematic Experimenta Jets Emiss Leptons b-tagging Pile-up Luminosity Theoretical a Signal Floating norr Z + jets W + jets tt Single top qu Diboson Multijet	Statistical Systematic Experimental uncertainties Jets $E_{\rm T}^{\rm miss}$ Leptons b -tagging b -jets c -jets light jets extrapolation Pile-up Luminosity Theoretical and modelling uncertainties Signal Floating normalisations Z + jets W + jets $t\bar{t}$ Single top quark Diboson

VH Signal Model

ME generator

- qq/qg→ZH = Powheg-Box v2 + GoSam + MiNLO
- gg→ZH = Powheg-Box v2 (LO)

Parton Shower and Higgs decay = Pythia8

Electroweak NLO differential correction $f(p_T^V) = HAWK$

	ZH→I ⁺ I ⁻ H					ZH→vvH										
m _H (GeV)	Cross Section (pb)	+QCD Scale %		±(PDF+α _s) %	±PDF %	±α _s %	gg→ZH (pb)	σγ	Cross Section (pb)	+QCD Scale %	-QCD Scale %	±(PDF+α _s) %	±PDF %	±α _s %	gg→ZH (pb)	σγ
125.00	2.982E-02	+3.8	-3.1	±1.6	±1.3	±0.9	4.14E-03	1.10E-04	1.776E-01	+3.8	-3.1	±1.6	±1.3	±0.9	2.457E-02	0.00E+00

W ⁺ H→I ⁺ vH							W ⁻ H—	→l⁻vH						
m _H	Cross Section	+QCD	-QCD	\pm (PDF+ α_s)	±PDF	±α _s	σ_{γ}	Cross Section	+QCD	-QCD	\pm (PDF+ α_s)	±PDF	±α _s	σ_{γ}
(GeV)	(pb)	Scale %	Scale %	%	%	%		(pb)	Scale %	Scale %	%	%	%	
125.00	9.426E-02	+0.5	-0.7	±1.8	±1.6	±0.9	3.09E-03	5.983E-02	+0.4	-0.7	±2.0	±1.8	±0.8	2.00E-03

qq/qg→ZH NNLO QCD(VH@NNLO) + NLO EW(HAWK) including photon-induced contribution gg→ZH NLO+NLL QCD(VH@NNLO rescaled with inclusive scale factor)

VH signal systematic uncertainties

Uncertainties on the total XS from HXSWG numbers

Acceptance uncertainties (not coming from HXSWG prescriptions):		
CMS	ATLAS	
 QCD factorization / renormalization scale 	 QCD factorization / renormalization scale 	

-) tactorization / renormalization scale variations by 0.5 and 2.0 independently
 - taking 68% CL interval
- UE/PS/MPI uncertainties from: Eigentune variations negligible

function

applied according to Stewart-Tackmann method for exclusive jet-bins PDF uncertainties from NNPDF3.0 replicas

- PDF uncertainties from: PDF4LHC15 30 PDFs set at 68% CL interval
 - UE/PS/MPI uncertainties from: A14 eigentune variations from mg5 aMC+Pythia8 alternative sample

variations by 0.5 and 2.0 independently

- comparison → uncertainties on the signal acceptance **and** on
- Powheg+Pythia8 / Powheg+Herwig7 → uncertainties on the total rate of the signal, and on the shape of the BDT discriminating the shape of pTV and m(bb)

V+jets background modeling strategies

CMS

- V+(light-flavor) modeling
 CRs defined by inverting b-tagging requirements (anti-2-btag)
- V+(heavy-flavor) modeling
 CRs defined by inverting M(jj)-window

(b-tag CMVA_{min} shape fitted from CRs)

Process	0-lepton	1-lepton	2-lepton low- $p_{\rm T}({ m V})$	2-lepton high- $p_T(V)$
W0b	1.14 ± 0.07	1.14 ± 0.07	_	_
W1b	1.66 ± 0.12	1.66 ± 0.12	1 –	_
W2b	1.49 ± 0.12	1.49 ± 0.12	_	_
Z0b	1.03 ± 0.07	_	1.01 ± 0.06	1.02 ± 0.06
Z1b	1.28 ± 0.17	_	0.98 ± 0.06	1.02 ± 0.11
Z2b	1.61 ± 0.10	_	1.09 ± 0.07	1.28 ± 0.09
tt	0.78 ± 0.05	0.91 ± 0.03	1.00 ± 0.03	1.04 ± 0.05

ATLAS

V+(heavy-flavor) modeling

included in the SRs

W: dedicated CR (large m-top, low m-bb) - yield only, no shape
Z: no dedicated CR - full m-bb spectrum

$$V+hf=V+(bb, bc, bl, cc)$$

Process	Normalisation factor
$t\bar{t}$ 0- and 1-lepton	0.90 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	0.97 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	1.04 ± 0.06
W + HF 2-jet	1.22 ± 0.14
W + HF 3-jet	1.27 ± 0.14
Z + HF 2-jet	1.30 ± 0.10
Z + HF 3-jet	1.22 ± 0.09

Background reweighting corrections for V+jets:

- f(p_T^V) differential correction (up to 10% at 400GeV) accounting for EW corrections
- $f(p_T^V)$ dedicated 1-lepton correction on W+light, W+b(b), ttbar, single-t
- deltaEta(jj) correction from LO/NLO comparison (depending on #b-labeled jets)

W+heavy flavors (1-lepton channel)

- Define dedicated control region (CR)
- Scale factors applied from CR to Signal Regions (SR)
- Systematic uncertainties fully correlated between CR and SR

Variable	W+HF
$p_{\mathrm{T}}(\mathbf{j}_1)$	>25
$p_{\mathrm{T}}(\mathbf{j}_2)$	>25
$p_{\mathrm{T}}(\mathrm{jj})$	>100
$p_{\mathrm{T}}(\mathrm{V})$	>100
CMVA _{max}	$>$ CMVA $_{\rm T}$
N_{aj}	=0
$N_{\mathrm{a}\ell}$	=0
$\sigma(p_{\mathrm{T}}^{\mathrm{miss}})$	>2.0
$\Delta\phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	<2
M(jj)	<90, [150, 250]

ATLAS

- standard 1-lepton selection + m(bb) < 75GeV m(top) > 225GeV
- Scale factor fitted directly in the SR
- extrapolation uncertainties from CR to SR obtained from theory
 - Sherpa 2.2.1 muR, muF, ckkw, qsf scale variations
 - Sherpa 2.2.1 comparison with Madgraph_aMC@NLO 2.2.2
- Pre-fit theory modeling uncertainties

	W + jets
W + ll normalisation	32%
W + cl normalisation	37%
W + bb normalisation	Floating (2-jet, 3-jet)
W + bl-to- $W + bb$ ratio	26% (0-lepton) and 23% (1-lepton)
W + bc-to- $W + bb$ ratio	15% (0-lepton) and 30% (1-lepton)
W + cc-to- $W + bb$ ratio	10% (0-lepton) and 30% (1-lepton)
0-to-1 lepton ratio	5%
W + HF CR to SR ratio	10% (1-lepton)
$m_{bb},p_{ m T}^{V}$	S

V+jets background modeling

ATLAS PUB note on V+jets modeling and MC simulation

- selection close to nominal VH(bb) analysis regions
- no W+hf CR/SR separation

Z+heavy flavors (0-/2-lepton channel)

- Define dedicated control region (CR)
- Scale factors applied from CR to Signal Regions (SR)
- Systematic uncertainties fully correlated between CR and SR

ATLAS

- no dedicated control region for Z+hf
- no m(bb) window selection applied in the nominal analysis selection
- m(bb) and pTV shape systematic derived from data/MC in Z+hf enriched-region (2-lepton) x (1-btag)
 (2-lepton) x (2-btag) x (remove events with m(jj) around remove events.

Layman's scaling

• Simple back-of-the-envelope luminosity scaling / no improvements or correlations

L _{int}	stat . error on $\mu = \sigma/\sigma_{\text{SM}}$ (from ATLAS numbers)	syst . error on $\mu = \sigma/\sigma_{\text{SM}}$ (from ATLAS numbers)	expected significance (from ATLAS numbers)
36/fb	0.24	0.31	3.0
80/fb	0.16	?	4.5
100/fb	0.14	?	5.0
150/fb	0.12	?	6.1

In addition: ATLAS+CMS combination ... which timescale?

Towards simplified Template Cross sections

Stage-0 split already *possible* with current analyses (WH, ZH signal strength provided, no split in qqZH and ggZH)

Stage-1 is the "minimal hoped for" split for Run-2 analyses: analysed dataset (\sim 36/fb) too small to extract a full stage-1 split \rightarrow promising with next update including additional luminosity

Current analyses can provide an interesting case for the implementation of STXS framework at stage-1

- Encourage exp. analyses to implement STXS stage-1 split (ready for the next analysis iteration - start to test with current analyses)
- From HXSWG VH:
 provide theory uncertainty for
 stage-1 split (per-bin uncertainties
 with correlation scheme)

Towards simplified Template Cross sections

Two aspects to theory uncertainties

- Residual theoretical uncertainties related to "unfolding" experimental event categories to STXS bins
- Uncertainties in interpretation of STXS bins, i.e. in SM (or beyond) cross section predictions for each bin
 - Also enter as "residual" uncertainties in measurement whenever bins with different sensitivities are merged

Implementation of uncertainties (in measurement or interpretation)

- Requires uncertainties per bin and their correlations
 - Particularly important when binning cut itself introduces a source of uncertainty that affects each bin but cancels in their sum
 - ► Implementation in terms of ±100% correlated or uncorrelated nuisance parameters
- → Need to identify and distinguish different sources of uncertainties and evaluate also their correlations between kinematic bins
 - Use generic parametrization of uncertainties in kinematic bins as discussed in YR4 Section 1.4.2a

First implementation of stage 0

LHCHXS WG1 VH sub-group: projects

VH XS prediction and uncertainties in STXS framework

deliverables: Software tool providing central value and uncertainties + recommendations

timescale: ~mid-summer

status: in progress

• HL/HE-LHC 27TeV VH cross-section

- deliverables: VH cross-section and uncertainties calculation at 27TeV
 - Assume results similar to what quoted for 13TeV, i.e. XS central values and uncertainties
 - Please let us know in case something more/different would be needed as this could affect the timescale
- o timescale: few months / summer
- status: not started yet

• V+hf modeling for VH(bb)

- deliverables: [public note] MC comparison across several V+hf MC tools targeting VH(bb) phase space, guidelines for theory uncertainties on V+hf predictions
- timescale: autumn 2018
- status: in progress [<u>https://indico.cern.ch/event/698454/</u>]

ggZH merged predictions

- deliverables: [potentially public note] Comparison between showered ggZH 0+1jet merged LO MC prediction, and ggZH
 LO prediction
- timescale: ~mid-summer 2018
- o status: not yet started 15

(more) BACK-UP

Outline of July's talk

Swift start of activities in the VH WG1 subgroup

first topics considered to design a roadmap for the future (short / medium / long term):

- precise modeling of VH processes @NNLO[QCD] and @NLO[EW]
- ▶ treatment of loop-induced gg→ZH
- latest experimental VH results
 - → state of VH predictions / tools used by experimental collaborations
 - → main theory limitations & "whishlist", possible improvements
- Simplified Template Cross Section STXS approach
- ▶ open point: treatment of main SM backgrounds for VH measurements

This talk: experimental take on VH matters, in light of recent results and towards the full Run-2 analyses

Francesco's talk: overview from the theory side - several contributions from the first VH subgroup meeting

Topics of interest

• Combination of NNLO QCD and NLO EW corrections in parton showers

- Short-term proposal: use POWHEG_MiNLO and reweight using YR4 EW correction factors either in the cross-section or differentially in VpT.
- Longer-term: investigate/encourage authors to collaborate on joint implementation in POWHEG, as has already been done for (simpler) W/Z production.

How can predictions for gg—>VH contribution be improved?

- try to improve approximation (tension between effectiveness of HEFT and boosted region where gg contribution is large);
- o can we exploit similarities with (very similar) gg—>HH process of G. Heinrich et al;
- o is there any mileage in a direct appeal to the Goldstone equivalence theorem (perhaps applies well enough in boosted region)?

Benchmark existing calculations of gg —> VH

 Should benchmark existing calculations of gg —> VH, which may contain different treatments and approximations, both with and without matching/merging.

• Discuss backgrounds

- Desire within experiments for more guidance/sharing of experience with background generation and benchmarking in boosted region.
- o General agreement that, while not the focus of this subgroup, we should help to facilitate such discussions.

VH theoretical uncertainties under simplified template cross-section approach (STXS)

- How should the calculation of uncertainties for VH be handled under simplified template cross-section approach (STXS), c.f. YR4.
- o In particular, correlated uncertainties between jet bins either using Stewart/Tackmann or other similar approaches.
- How to apply/extend ggF experience to VH?

Lepton channel significances

CMS

Channels	Significance	Significance
	expected	observed
0-lepton	1.5	0.0
1-lepton	1.5	3.2
2-lepton	1.8	3.1
Combined	2.8	3.3

ATLAS

Dataset	1	p_0	Significance		
	Exp.	Obs.	Exp.	Obs.	
0-lepton	4.2%	30%	1.7	0.5	
1-lepton	3.5%	1.1%	1.8	2.3	
2-lepton	3.1%	0.019%	1.9	3.6	
Combined	0.12%	0.019%	3.0	3.5	

Fit Result: Background Normalizations

- Simultaneous max-likelihood fit over 7 signal regions (BDT score) and 63 control regions (minimum jet b-tag discriminant).
 - Background normalizations allowed to float for V+jets, tt.
 - V+jets normalization fitted separately for 0/1/2 b-jets.

Mi	ssing $E_T > 170 \text{ GeV}$	p _T (W) > 100 GeV	100 GeV $< p_T(Z) > 150 G$	$p_T(Z) > 150 \text{ GeV}$
Process	0-lepton	1-lepton	2-lepton low- $p_{\rm T}({ m V})$	2-lepton high- $p_{\rm T}({\rm V})$
W0b	1.14 ± 0.07	1.14 ± 0.07	_	_
W ₁ b	1.66 ± 0.12	1.66 ± 0.12	_	_
W2b	1.49 ± 0.12	1.49 ± 0.12	_	_
Z ₀ b	1.03 ± 0.07	_	1.01 ± 0.06	1.02 ± 0.06
Z ₁ b	1.28 ± 0.17	_	0.98 ± 0.06	1.02 ± 0.11
Z ₂ b	1.61 ± 0.10	_	1.09 ± 0.07	1.28 ± 0.09
tī	0.78 ± 0.05	0.91 ± 0.03	1.00 ± 0.03	1.04 ± 0.05

Signal Modelling qqVH signal MC produced with POWHEG+MiNLO and then rescaled to NNLO QCD.

- NLO EWK corrections applied differentially in p_T(V).
 - More details <u>here</u> and in YR4.

S. Cooperstein (Princeton)

Sample	Generator	
VH	Powheg with pythia8 parton-showering	
ggZH	Powheg with pythia8 parton-showering	

Background Modelling Statistical power of MC for primary backgrounds (tt, V+jets) critical for this analysis.

- V+jets modelled with MG5_aMC at LO due to relatively high available statistics.
 - EWK NLO corrections differential in p_T(V).

S. Cooperstein (Princeton)

- V+jets Δη(jj) distribution re-weighted to match NLO prediction.
- Separate linear p_T(W) corrections applied in 1-lepton channel to tt̄, W +udscg, and combination of W+b(b) and single top.

100	
Sample	Generator
tī	Inclusive powheg-pythia8
V+jets	HT-binned MG5_aMC at LO + b-enriched samples
VV	MG5_aMC at NLO
Single top s/t-channel	ST_t/s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8
tW	ST_tW_(anti)top_5f_inclusiveDecays_13TeV-powheg-pythia8
QCD	HT-binned MG5_aMC at LO

		Individual contribution	Effect of removal to
Source	Type	to the μ uncertainty (%)	the μ uncertainty (%)
Scale factors (tt, V+jets)	norm.	9.4	3.5
Size of simulated samples	shape	8.1	3.1
Simulated samples' modeling	shape	4.1	2.9
b tagging efficiency	shape	7.9	1.8
Jet energy scale	shape	4.2	1.8
Signal cross sections	norm.	5.3	1.1
Cross section uncertainties (single-top, VV)	norm.	4.7	1.1
Jet energy resolution	shape	5.6	0.9
b tagging mistag rate	shape	4.6	0.9
Integrated luminosity	norm.	2.2	0.9
Unclustered energy	shape	1.3	0.2
Lepton efficiency and trigger	norm.	1.9	0.1

· Experimental uncertainties:

experimental

- · Background scale factors:
 - Uncertainty on tt, V+jets norms. constrained by control regions in simultaneous fit but limited by: Acceptance differences between control region and signal region selections.
 - Uncertainty on background process cross sections
 - · Statistics in data
- · B-tagging efficiency:

S. Cooperstein (Princeton)

- Split into independent uncertainty sources and further de-correlated based on b-jet kinematics (p_T, η).
- · Jet energy scale:
- Split into 27 independent uncertainty sources.

Opin into 2	rindependent	uncertainty	Source

V(||/|v/vv)H(bb)

17/10/2017

Systematics (MC and Theory)

Source	Туре	Individual contribution to the μ uncertainty (%)	Effect of removal to the μ uncertainty (%)
Scale factors (tt, V+jets)	norm.	9.4	3.5
Size of simulated samples	shape	8.1	3.1
Simulated samples' modeling	shape	4.1	2.9
b tagging efficiency	shape	7.9	1.8
Jet energy scale	shape	4.2	1.8
Signal cross sections	norm.	5.3	1.1
Cross section uncertainties (single-top, VV)	norm.	4.7	1.1
Jet energy resolution	shape	5.6	0.9
b tagging mistag rate	shape	4.6	0.9
Integrated luminosity	norm.	2.2	0.9
Unclustered energy	shape	1.3	0.2
Lepton efficiency and trigger	norm.	1.9	0.1

• MC and Theory Systematics:

- Size of simulated samples:
- Limited available MC statistics in crucial high-p_T(V) phase space.
 - · Particularly an issue for V+jets MC, also affected (less) by available tt MC stats in 1-lepton channel.
- · Simulated samples modelling:
 - Modelling of p_T(W) for tt and V+jets with leading-order samples.
- Factorization and normalization scales varied up/down by factor 0.5/2.0. Individual yield uncertainties per process from PDF.
- · Signal cross sections:
- Thanks to the LHC • NNLO QCD correction uncertainty 1% (4%) for WH/ZH production processes.
- · 15% uncertainty for single top and diboson cross sections.
- · Uncertainty on parton shower modelling/tune not included.
- - Effect of variations in tune found to be negligible. Parton shower modelling to some extent covered by μ_E/μ_D variations.

Higgs XS WG

Simulated samples

Simulated samples summarised in table below

Process	ocess ME generator ME PDF		PS and Hadronisation	UE model tune	Cross-section order	
Signal	200		ALI AL			
$qq \rightarrow WH$ $\rightarrow \ell \nu b\bar{b}$	POWHEG-BOX v2 [37] + GoSam [40] + MiNLO [41, 42]	NNPDF3.0NLO(*) [38]	Рутніа8.212 [31]	AZNLO [39]	NNLO(QCD)+ NLO(EW) [43-49]	
$qq \rightarrow ZH$ $\rightarrow vvb\bar{b}/\ell\ell b\bar{b}$	POWHEG-BOX v2 + GoSam + MINLO	NNPDF3.0NLO(*)	Рутніа8.212	AZNLO	NNLO(QCD) ^(†) + NLO(EW)	
$gg \rightarrow ZH$ $\rightarrow \nu\nu b\bar{b}/\ell\ell b\bar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(⋆)	Рутніа8.212	AZNLO	NLO+ NLL [50-54]	
Top quark						
tī	Powheg-Box v2 [55]	NNPDF3.0NLO	Рутніа8.212	A14 [56]	NNLO+NNLL [57]	
s-channel	Powheg-Box v1 [58]	CT10 [59]	Рутніа6.428 [60]	P2012 [61]	NLO [62]	
t-channel	Powheg-Box v1 [58]	CT10f4	Рутніаб.428	P2012	NLO [63]	
Wt	Powheg-Box v1 [64]	CT10	Рутніа6.428	P2012	NLO [65]	
Vector boson + jets						
$W \rightarrow \ell \nu$	SHERPA 2.2.1 [34, 66, 67]	NNPDF3.0NNLO	SHERPA 2.2.1 [68, 69]	Default	NNLO [70]	
$Z/\gamma^* \to \ell\ell$	SHERPA 2.2.1	NNPDF3.0NNLO	SHERPA 2.2.1	Default	NNLO	
$Z \rightarrow \nu \nu$	SHERPA 2.2.1	NNPDF3.0NNLO	SHERPA 2.2.1	Default	NNLO	
Diboson						
WW	Sherpa 2.1.1	CT10	SHERPA 2.1.1	Default	NLO	
WZ	SHERPA 2.2.1	NNPDF3.0NNLO	SHERPA 2.2.1	Default	NLO	
ZZ	SHERPA 2.2.1	NNPDF3.0NNLO	SHERPA 2.2.1	Default	NLO	

- Signal events generated using the first PDF in the NNPDF3.0NLO set and reweighted to the PDF4LHC15NLO set using Powheg-Boxv2
- Sherpa 2.2.1 V+jets is NLO@0,1,2-partons; LO@3,4-partons. CKKW matching with matching scale of 20 GeV, 5FS for the matrix element calculations
- V + bb, V + bc, V + bl, V + cc grouped as V + HF as dominant V + jets contribution
 - Truth flavour labels of b-tagged jets (ΔR matching of reconstructed jets to truth hadrons)
- Multijet background negligible in 0- and 2-lepton channels
 - Determined from data-driven studies
- Estimated in 1-lepton channel using hybrid of template method and fake factor method (anti-isolated to isolated bias correction)
 - Multijet contamination \sim 5% in 2-jet, \sim 0.5% in 3-jet

Fit model: Floating normalisations

- Overview of fit model concept
- 5 floating background normalisations for:
 - $ightharpoonup t\overline{t}$ (0+1 lepton, 2-lepton 2-jet, 2-lepton 3+-jet)
 - ► W+HF, Z+HF (2-jet, 3-jet)
- $t\bar{t}$ contribution is very different in 0- and 1-lepton to 2-lepton case:
 - ▶ In 0- and 1-lepton, have missed an object (jet or lepton) → one common floating normalisation
 - ▶ In 2-lepton, dileptonic $t\bar{t}$ contributes directly \rightarrow top $e\mu$ CR can constrain normalisation in 2-/3+-jet
- Normalisation driven by a region, with appropriate extrapolation uncertainties

V+jets background modeling

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-006/

ATLAS PUB not on V+jets modeling and MC simulation

- selection close to nominal VH(bb) analysis regions
- no cut on #jets<=3
- no W+hf CR/SR separation

gg→ZH Cross Section

- ZH production has two distinct sources of gg→ZH:
- 1. a genuine NNLO contribution to what called "Drell-Yan-like", where ZH is accompanied by two-parton radiation, gg→HZ+qqbar.
 - 2. top- and bottom-loop induced contribution without any additional partons in the final state.
- What is usually meant by gg→HZ below is 2) above.
- The statement that "all but gg→HZ" is the same as "qq- and qg-initiated" is correct only through NLO QCD.
- For separate cross sections and associated QCD scale uncertainties in qq/qg→ZH(+gg→HZ+qqbar) and gg→ZH for NLO/LO MC normalization, use
 - ∘ σ (all but gg→ZH) = σ (pp→ZH)@(NNLO QCD + NLO EW, NLO+NLL QCD gg→ZH) σ (gg→ZH)@(NLO+NLL QCD),
 - Separate QCD scale uncertainties are σ(all but gg→ZH) or on σ(gg→ZH) are calculated with VH@NNLO program.
- For M_H=125.0 GeV and at √s=13 TeV,

Process	Cross Section (pb)	+QCD Scale %	-QCD Scale %	±(PDF+α _s) %	±PDF %	±α _s %
pp→ZH	0.8839	+3.8%	-3.1%	±1.6%	±1.3%	±0.9%
qq/qg→ZH, gg→HZ+qqbar (all but gg→ZH)	0.7612	+0.5%	-0.6%	±1.9%	±1.7%	±0.9%
gg→ZH	0.1227	+25.1%	-18.9%	±2.4%	±1.8%	±1.6%

Parametrization of VH Uncertainties: Sources

QCD uncertainties

- $\bullet \ \Delta_{\mu}, \Delta_{150}, \Delta_{250}$
 - ightharpoonup Option 1: overall yield uncertainty plus two p_T^V binning (shape) uncertainties
 - ightharpoonup Option 2: one uncorrelated uncertainty for each p_T^V bin
- $\Delta_{0/1}$: jet bin migration uncertainty
- Same nuisance parameter for W and Z (i.e. 100% correlated)

EW uncertainties

- ullet $\Delta_{\mathbf{Sud}}$: EW Sudakov effects (correlated between W and Z)
- ullet $\Delta_W, \Delta_Z, \Delta_\gamma$
 - Separate uncertainties for non-Sudakov contributions
- Separate sources (uncorrelated uncertainties) for qar q o VH and gg o ZH
 - Study which sources for gg o ZH should be correlated with gg o H
- Some of this also impact "VBF" bins through its hadronic VH contribution

	QCD uncertainties					uncertai	inties
$q\bar{q}' o W$	$\Delta_{ m WH}^{ m y}$	$\Delta_{150}^{ m WH}$	$\Delta_{250}^{ m WH}$	$\Delta_{0/1}^{ m WH}$	$\Delta_{ m Sud}^{ m WH}$	$\Delta_{ m hard}^{ m WH}$	
$p_T^V [0,150]$	x_1	-1	-y		x_1	•••	
$p_T^V \ [150,\!250]$	x_2	+1-y	-(1-y)	0	x_2	• • •	
= 0-jet	x_2z	+(1-y)z	-(1-y)z	+1			-
\geq 1-jet	$x_2(1-z)$	$+(1\!-\!y)(1\!-\!z)$	-(1-y)(1-z)	-1	•••	•••	
p_T^V [250, ∞]	x_3	y	+1		x_3	•••	
q ar q o Z	$\Delta_{ m ZH}^{ m y}$	$\Delta_{150}^{ m ZH}$	$\Delta_{250}^{ m ZH}$	$\Delta_{0/1}^{ m ZH}$	$\Delta_{ m Sud}^{ m ZH}$		$\Delta_{ m hard}^{ m ZH}$
$p_T^V [0,150]$	x_1	-1	-y		x_1		
$p_T^V \ [150,\!250]$	x_2	+1-y	-(1 - y)	0	x_2		
= 0-jet	x_2z	+(1-y)z	-(1-y)z	+1			•••
\geq 1-jet	$x_2(1-z)$	+(1-y)(1-z)	-(1-y)(1-z)	-1	•••		•••
p_T^V [250, ∞]	x_3	y	+1		x_3		