WG1 VBF theory report

B. Jäger, A. Karlberg, M. Rauch

LHC HXSWG workshop, Mar 2018

Outline:

- New Results at NNLO QCD accuracy
- Parton-shower accuracy
- High-pT predictions

NNLO QCD Corrections to VBF-H Production

previous status:

- first calculated in structure-function approach
 ⇒ inclusive cross section (no cuts on jets)
- in this approach also N³LO QCD calculation available

Results:

[Bolzoni, Maltoni, Moch, Zaro]

[Dreyer, Karlberg]

	$\sigma^{({\rm no}\;{\rm cuts})}\;[{\rm pb}]$	$\sigma/\sigma^{\rm NLO}$
LO	$4.099 {}^{+0.051}_{-0.067}$	1.032
NLO	$3.970^{+0.025}_{-0.023}$	1
NNLO	$3.932 {}^{+0.015}_{-0.010}$	0.990
N3LO	$3.928 {}^{+0.005}_{-0.001}$	0.989

small corrections beyond NLO, mostly reduction of scale uncertainties

• much different behaviour when introducing jet and VBF cuts

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi]

recent updates:

• second, independent calculation of differential NNLO QCD effects

[Cruz-Martinez, Gehrmann, Glover, Huss, arXiv:1802.02445]

• helped discover a bug in the virtuals of the H+3jets calculation

[Figy, Hankele, Zeppenfeld, arXiv:0710.5621]

- implementation of calculation used in both VBFNLO and POWHEG-BOX \rightarrow fixed in version 3.0 β 5 and svn rev. 3470, respectively
- code used in projection-to-Born method of [Cacciari et al., arXiv:1506.02660] \rightarrow fixed in public version proVBFH 1.1.0

after bugfix:

• excellent agreement between both NNLO QCD calculations

	$\sigma^{(\rm VBF\ cuts)}_{1506.02660}\ [\rm pb]$	$\sigma_{1802.02445}^{(\rm VBF\ cuts)}\ [\rm pb]$	$\sigma/\sigma^{\rm NLO}$
LO	$0.957{}^{+0.066}_{-0.059}$	$0.957 {}^{+0.066}_{-0.059}$	1.092
NLO	$0.876 {}^{+0.008}_{-0.018}$	$0.877 {}^{+0.007}_{-0.017}$	1
NNLO	$0.844 {}^{+0.008}_{-0.008}$	$0.844^{+0.009}_{-0.009}$	0.962

- \bullet size of NNLO QCD correction reduced to -3.8%
- scale variation uncertainty stabilised

NNLO QCD Corrections to VBF-H Production

distributions after bugfix:

- reduced scale uncertainty also in distributions
- in general also better agreement with parton-shower prediction

Jet Clustering Dependence

Parton-Shower Effects

parton-shower and underlying-event systematics play an important role in VBF selections

 \Rightarrow study

[Jäger, Karlberg, MR, Zaro]

compare predictions at NLO+PS accuracy from

- MG5_aMC
- Powheg-Box

• VBFNLO 3

vs fixed-order NNLO QCD

(results shown: vs fixed-order NLO QCD, MG5_aMC + H++2.7.1-Default)

current level of comparison:

- $\checkmark~$ parton shower
- \checkmark hadronization
- ${\sf X}$ hadronic decays
- X multi-parton interactions

observables present at LO

- in general good agreement within different parton-shower predictions \leftrightarrow investigate MG5_aMC+H++-Default deviation after update to H7-Default
- cross section reduction compared to fixed-order NLO
 - \rightarrow effect of additional radiation
 - \rightarrow out-of-jet-cone emissions reduce energy of jets
 - \leftrightarrow invariant-mass cut on tagging jets
 - \rightarrow well understood

- jet activity between the two tagging jets strongly suppressed in VBF
 ↔ not the case in QCD-induced "gluon-fusion" *Hjj* production
- veto on additional central jets can help to significantly reduce QCD-induced background without losing much of the signal [Barger, Phillips, Zeppenfeld '94]
- when adding parton-shower effects: significantly different central jet activity predicted by various codes disagreement on distribution of number of jets [Nason, Oleari]
- third-jet distributions stabilise when VBF-H+3jets NLO QCD matched to parton shower [Jäger, Schissler, Zeppenfeld]

• differences in modelling shift to higher jet multiplicity

observables related to the third jet

Definition:

$$z_{j3}^* = \frac{\left|y_{j3} - \frac{y_{j1} + y_{j2}}{2}\right|}{\left|y_{j1} - y_{j2}\right|}$$

 \rightarrow position of tagging jets at $z_{i3}^* = 0.5$

- fixed order: Hjjj LO precision
- widely different predictions in central region $(z_{j3}^* < 0.5)$
- Herwig 7 (both dipole and angular-ordered PS): reduction of jet activity compared to fixed-order prediction
- Pythia 8:

large enhancement owing to modelling as initial-initial / final-final recoils with huge available phase space

• Pythia 8 (dipole):

option SpaceShower:dipoleRecoil = on more dipole-style treatment of initial-final dipoles \rightarrow suppression

↔ not compatible with MC@NLO matching of MG5_aMC (intricate changes in MC counter terms required)

• same effect seen in VBS- W^+W^+jj recently

[Ballestrero et al. (VBSCAN), arXiv:1803.07943]

Parton-Shower Effects

third jet

third and further jets

- fixed order: Hjjj LO precision
- reduction in central jet activity also predicted when matching H+3jets NLO from MG5_aMC to Pythia 8
- enhancement effects again when including further jets as well
- \rightarrow multi-jet merging

high transverse momentum region of Higgs starting to be studied

 \rightarrow need dedicated study of theory predictions

[CMS HIG-17-010]

Roadmap

short term

- parton-shower accuracy
 - comparisons between different matched samples and different showering options
 - dedicated focus on central-jet veto
 - > possibly new recommendations on central value and uncertainties to be adopted
- high- p_T Higgs boson
- cross sections for HE-LHC (27 TeV)
- Simplified Template Cross Sections uncertainty
 - \rightarrow preliminary results in experimental talk

medium & long term

- multi-jet merging of VBF-H+2jets and VBF-H+3jets
- QCD-induced Hjj background uncertainties
 - large contamination of theory uncertainties from ggHjj signal
 - ggHjj signal overestimated by current generators

 $\leftrightarrow \mathsf{ggF} \mathsf{ sub-group}$

• higher-order corrections plus parton shower (NNLOPS)

Twiki page: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGVBF

