WG2 status and plans

Mingshui Chen, IHEP <u>Chris Hays, Oxford University</u> David Marzocca, INFN Trieste Francesco Riva, University of Geneva

LHC Higgs XS WG general meeting 27 March, 2018

Data

ATLAS Preliminary

 $H \rightarrow WW^* \rightarrow ev\mu v, N_{\text{iet}} \leq 1$

√s = 13 TeV, 36,1 fb⁻¹

> 2000 U 1800

1000

800 600

Measurement

Interpretation

Effective field theory

Observed HEL constraints with $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$ ATLAS Preliminary cG [10⁻⁴] $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ cA [10⁻⁴] cu cHW [10⁻¹] cHB [10⁻¹] cWW - cB [10⁻¹] -2 2 0 Parameter value

130

120

Signal

20 Ŵ

ka

[A]

Organization

LHC Higgs Cross Section Working Group 2 - Higgs Properties

Organization:

- Mailing list: Ihc-higgs-properties@cernNOSPAMPLEASE.ch
- Next meetings:
 - WG2 session in general meeting March 27, 9 am r
- Recent meetings:

 - Joint EW+WG2 meeting July 10 ₽
 - STXS meeting July 6 ⊿
 - Kickoff meeting May 8

Topics:

- STXS & differential XS
 - Dedicated emails <u>lhc-higgs-prop-fidSTXS@cernNOSPAMPLEASE.ch</u> (for subgroup) and <u>lhc-higgs-fidSTXS-convener@cernNOSPAMPLEASE.ch</u> (for conveners Nicolas Berger, Predrag Milenovic, Frank Tackmann).
 - · Plan to have note with updates to STXS uncertainties and framework
- PO
 - · Overview of effective POs and tools for extraction from measurements
 - Reweighting code to apply to existing MC
 - HiggsPO model available in Madgraph with NLO QCD corrections for VH/VBF production
- EFT
 - · Tools in development: Implementation of Warsaw basis in Madgraph with NLO QCD corrections
 - Validity issues under discussion: Defining the region of ci vs Lambda (square term gives an estimate of the uncertainty from higher powers of 1/Lambda)
 - Note on STXS->EFT mapping available
 - Tools required for fit to combined Higgs+EW+Top data
- BSM benchmarks

C. Hays, Oxford University

WG2 twiki summarizes topics and links to recent meetings https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG2

STXS/FidXS subgroup with conveners Nicolas Berger, Predrag Milenovic, & Frank Tackmann https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGFiducialAndSTXS

Documenting progress in LHCHXSWG internal notes

Collect into a WG2 summary of strategies and tools for the end of Run 2

WG2 session

27 Mar 2018

C. Hays, Oxford University

Differential and simplified-template XS

(Nicolas Berger's talk)

Differential cross-sections: Standardized binning defined for combinations

Measurement distributions defined More to add? E.g. $\Delta \phi(j_1, j_2)$, decay distributions

- ID distributions:
 p_T(H), N(jets), |Y(H)|, p_T(jet I),
 p_T(jet 2), |p_T(H) p_T(jet I)|, |Y(H) Y(jet I)|, |Y(jet I) Y(jet 2)|, M_{ij}.
- 2D distributions: p_T(H) x N(jets), p_T(H) x |Y(H)|.

Also: combined resonant (Higgs) + nonresonant (background) measurements in signal and control regions Standardize differential *production* cross sections & combine across channels? Include ratio of decay rates?

ST cross-sections: Refine categories and extend uncertainty estimates

Uncertainties: VBF and VH correlation strategy recently defined

Category updates: $ggF p_T^H binning (200-350, 350-500, >500; split 0-60 to 0-15, 15-60?) \& merge ggF+bbH$ $ggF/VBF signed \Delta \phi(j_1,j_2) bins?$ Split ttH to $p_T^H 0-200, >200$ Should revisit VBF categories (m_{jj} bins?) 27 Mar 2018 C. Hays

STXS ETHzürich

We want to know how the ST

orobe

rich

Dedicated study for VH performed by J De Blas, K Lohwasser, P Musella, K Mimasu https://indico.cern.ch/event/699709/contributions/2907961/attachments/1606017/2548177/WG2_STXS_vs_EFT.pdf

$$\mathcal{O}_{HW} = \frac{ig}{2\Lambda^2} \left[D^{\mu} \varphi^{\dagger} \sigma_k D^{\nu} \varphi \right] W^k_{\mu\nu}$$

 $c_{\scriptscriptstyle HW}=\pm 0.03~{
m and}~\pm 0.01$

Fid. phase space $p_T(jet) > 20 \text{ GeV } |\eta| < 2.5$ $p_T(lep) > 25 \text{GeV } |\eta| < 2.5$ n(lep) = 2 $n(bjets) = 2 (\epsilon(btag) = 0.7)$ $75 < M_{\parallel} < 105$ $60 < M_{bb} < 140$

Distributions raise the question of applicability of STXS

STXS vs optimized analysis

SAMPLE	SEL. EFFICIENCY
Zbb	<0.01
SM VH	0.19
c _{HW} = 0.03	0.31
c _{HW} = -0.03	0.14
c _{HW} = 0.01	0.23
c _{HW} = -0.01	0.16

Ideally compare reconstruction efficiency in each STXS bin

BDT analysis gives $\sim 5\%$ sensitivity improvement to c_{HW} in VH production

Could check STXS applicability by fitting for c_{HW} in BDT and STXS analyses

Worthwhile to perform exercise on VBF production

C. Hays, Oxford University

Pseudo-observables

ATLAS has probed YR4 pseudo-observables in $H\rightarrow$ 41 decay

https://indico.cern.ch/event/682466/contributions/2796809/attachments/1573127/2482949/andrea_workshop.pdf

$$\kappa \equiv \left\{ \kappa_{ZZ}, \varepsilon_{Ze_L}, \varepsilon_{Ze_R}, \varepsilon_{Z\mu_L}, \varepsilon_{Z\mu_R}, \varepsilon_{ZZ}, \varepsilon_{Z\gamma}, \varepsilon_{\gamma\gamma}, \varepsilon_{ZZ}^{CP}, \varepsilon_{Z\gamma}^{CP}, \varepsilon_{\gamma\gamma}^{CP} \right\}$$

Use unfolded measurement of bins in m₁₂-m₃₄ plane to constrain contact interactions and rate assuming lepton universality

Pseudo-observables

If new physics is confined to a high scale we can describe it with EFT

Few-particle scenario: *benchmarks described by limited number of EFT parameters* February WG2 meeting on scenarios, document in preparation (Francesco Riva's talk)

Many-particle scenario: *model-independent global fit for EFT parameters* Various strategies for global fits, e.g.:

Electroweak data fit including EFT uncertainties (Berthier, Bjorn, Trott) Electroweak fit without flavor universality (A Falkowski, M Gonzalez-Alonso, K Mimouni) Electroweak + Higgs global fit & few-particle interpretation (John Ellis's talk)

A global fit to LHC data will need electroweak and top data Operators affecting Higgs data can be constrained by these measurements LHC WG activities in talks from Yusheng Wu (EW) & Markus Seidel (top) Comprehensive documentation on top EFT now available (Gauthier Durieux's talk)

Existing EFT constraints from ATLAS use HEL implementation of SILH basis https://indico.cern.ch/event/682466/contributions/2796813/attachments/1573262/2483194/WG2_dec.pdf

SM expected HEL constraints with $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$

ATLAS fit uses more categories than measured STXS

Fit to STXS measurement can only constrain five parameters https://indico.cern.ch/event/682466/contributions/2796820/attachments/1573120/2482936/WG211Dec2017.pdf

Recent and upcoming tools make a global experimental fit possible

SMEFTsim: complete flavor-general implementation of dimension-6 operators *Also includes a U(3)*⁵*-symmetric version*

Standard Model Ellective Field Theory The SMEL ISIN package				
	Case	CP even	CP odd	WHZ Pole parameters
Authors	General SMEFT $(n_f = 1)$	53 [10]	23 [10]	~ 23
Ilaria Brivio, Yun Jiang and Micheal Trott	General SMEFT $(n_f = 3)$	1350 [10]	1149 [10]	~ 46
ilaria.brivio@nbi.ku.dk, yunjiang@nbi.ku.dk, michael.trott@cern.ch	$U(3)^5$ SMEFT	~ 52	~ 17	~ 24
NBIA and Discovery Center, Niels Bohr Institute, University of Copenhagen	M <mark>FV SMEFT</mark>	~ 108	-	~ 30

Last modified on U9/18/1/ 16:41:21

The model description

The Standard Model Effective Field Theory (SMEFT) is constructed out of a series of $SU(3)_C \times SU(2)_L \times U(1)_Y$ invariant higher dimensional operators L_6 , L_7 , ... built out of the SM fields.

The SMEFTsim package provides a complete implementation of the lepton and baryon number conserving dimension-6 Lagrangian adopting the Warsaw basis arXiv:1008.4884

The <u>SM Lagrangian</u> is included and extended with the SM loop-induced Higgs couplings to gg, $\gamma\gamma$ and Z γ .

Standard Model Effective Field Theory The SMEETeim peekage

The SMEFTsim package provides implementations for 3 different flavor assumptions and 2 input scheme choices, for a total of 6 different models.

An implementation to NLO in QCD is imminent

https://indico.cern.ch/event/682466/contributions/2796827/attachments/1573310/2483453/nloeftstatus.pdf Will allow tests of EFT Hqq coupling in ggF loop

Study of sensitivity to CP-odd observables using information geometry https://indico.cern.ch/event/682466/contributions/2796822/attachments/1573344/2483360/cern_cp_17.pdf

Summary

WG2 working towards a comprehensive strategy for measurements and interpretations for Run 2

Recent interpretation tools can feed back to measurement strategies *Expect further iteration before end of Run 2*

WG2 meetings every 3-6 months

Documenting progress in LHCHXSWG internal notes STXS/FidXS update (soon) STXS mapping to HEL operators (posted) Benchmark EFT scenarios (to appear) EFT tools and fits (envisioned)

Collect into summary document for end of Run 2

Extras from December meeting

STXS-PO complementarity

David Marzocca

Procedurally STXS \rightarrow PO is the same as STXS \rightarrow EFT

PO characterizes an amplitude; EFT characterizes all amplitudes C. Hays, Oxford University

Higgs self-coupling

Stefano Di Vita

Compare & combine w/double-Higgs

Double-Higgs drives the bound on κ_{λ} while, single-Higgs observables are essential in order to constrain the **other** coefficients deforming $\sigma(hh)$

Differential (m_{hh}) double-Higgs removes degeneracy due to second minimum

HH will dominate sensitivity and differential M_{hh} measurement breaks degeneracy

27 Mar 2018

Time to add to STX Spiritfollow up

EFT in Madgraph to NLO in QCD

Ken Mimasu

New EFT scale uncertainty

- Scale variation uncertainty approximates missing higher orders in perturbative expansion
 - EFT description contains an additional source of scale dependence from the running/mixing of Wilson coefficients
- Proposal for a new scale uncertainty component

• Take c_i defined at scales $2\mu_0 \& \mu_0/2$ and run back to the central scale

Does not cancel in e.g. cross section ratios for which traditional scale uncertainty drops out

EFT in Madgraph to NLO in QCD

SMEFT@NLO in QCD

- Merger of HELatNLO and Top/Higgs-EFT
 - Use Warsaw basis but basis independent input choice will be provided by Rosetta (also preparing an MG5_aMC plugin)

Higgs vev &	\mathcal{O}_{arphi}	$(arphi^\dagger arphi)^3$	_	_	
kinetic term	$\mathcal{O}_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	_	_	
mz (cust. sym.)	$\mathcal{O}_{arphi D}$	$(\varphi^{\dagger}D_{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$	_		
Gauge/Higgs & gauge kinetic terms/mixing	$\mathcal{O}_{arphi G}$	$\varphi^{\dagger}\varphiG^{\mu\nu}_{A}G^{A}_{\mu\nu}$	$\mathcal{O}_{arphi ilde{G}}$	$arphi^\dagger arphi G^{\mu u}_A ilde G^A_{\mu u}$	
	$\mathcal{O}_{arphi W}$	$\varphi^{\dagger}\varphiW^{\mu\nu}_{i}W^{i}_{\mu\nu}$	$\mathcal{O}_{arphi ilde W}$	$arphi^\dagger arphi W^{\mu u}_i ilde W^i_{\mu u}$	
	$\mathcal{O}_{arphi B}$	$\varphi^{\dagger}\varphiB^{\mu u}B_{\mu u}$	$\mathcal{O}_{arphi ilde{B}}$	$arphi^{\dagger} arphi B^{\mu u} ilde{B}_{\mu u}$	
	$\mathcal{O}_{arphi WB}$	$\varphi^{\dagger}\sigma^{i}\varphi W_{i}^{\mu u}B_{\mu u}$	$\mathcal{O}_{\varphi W ilde{B}}$	$arphi^{\dagger}\sigma^{i}arphiW_{i}^{\mu u} ilde{B}_{\mu u}$	
Triple gauge,	\mathcal{O}_{3W}	$\epsilon^{ijk}W_{i,\mu\nu}W_j^{\nu\rho}W_{k,\rho}^{\mu}$	$\mathcal{O}_{3 ilde{W}}$	$\epsilon^{ijk}\tilde{W}_{i,\mu\nu}W_j^{\nu\rho}W_{k,\rho}^{\mu}$	CP violation

Subset of operators, taking requests

OrderHayl, monthutimescale

Higgs p_T in EFT

do/d

gg M_h