HH production at NNLO including M_t effects

Javier Mazzitelli

In collaboration with M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. Lindert

HXSWG general meeting 26 March 2018

HH production via gluon fusion

- NLO corrections are large (~66% at 14TeV), and with still sizeable uncertainties (~±13%)
- **Beyond that:** Higgs Effective Field Theory (**HEFT**)

Top quark integrated out → Effective tree-level gluons-Higgs coupling

• Corrections computed in the HEFT and typically normalized by exact LO differentially in M_{hh}

 HEFT: large Mt limit → Worse than for single Higgs (larger invariant mass)

[S. Borowka et al. arXiv:1604.06447]

- Born improved overestimates the NLO total XS by a 15%
- Poor description of the tail of some distributions

- To obtain accurate NNLO results, we need to **combine the HEFT NNLO with the full NLO**
- Moreover, we need to include **finite M**_t **effects** in the NNLO corrections

HH at NNLO with M_t effects

Higgs boson pair production at NNLO with top quark mass effects

M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. Lindert, JM [arXiv:1803.02463]

- Fully differential parton-level predictions for Higgs boson pair production via gluon fusion
- Combination of full NLO with large-M_t NNLO
- NNLO piece improved with different reweighting techniques to account for finite-M_t effects
- Estimation of remaining M_t uncertainty at NNLO
- Most advanced perturbative prediction available to date

Technical ingredients

Tree-level and one-loop amplitudes (HEFT and full-M_t) → OpenLoops

[Cascioli, Lindert, Maierhofer, Pozzorini]

Full NLO (two-loop) virtual corrections → two dimensional grid + interpolation

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke, '16]

Analytical results for NNLO two-loop corrections in the HEFT

[de Florian, JM, '13]

Implementation based on public code MATRIX

[Kallweit, Grazzini, Wiesemann, '17]

We worked with three different approximations for the pure NNLO piece:

- Born-projected approximation NNLO_{B-proj}
- Full-theory approximation NNLO_{FTapprox}

NLO-improved approximation - NNLO_{NLO-i}

Done originally in Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk and Zirke, arXiv:1608.04798 [hep-ph]

Simplest approach: for **each bin** of each histogram we do

$$NNLO_{NLO-i} = NLO \times \left(\frac{NNLO}{NLO}\right)_{HEFT}$$

- Observable level reweighting, technically simple
- Finite M_t effects in the NNLO piece enter via the full NLO
- Has to be repeated for each observable and binning (bin size dependent!)
- We compute the total cross section based on the M_{hh} distribution

Born-projected approximation - NNLO_{B-proj}

Reweight each NNLO event by the ratio of the full and HEFT Born squared amplitudes

Different multiplicities (double real and real-virtual corrections)

Projection to Born kinematics needed

We make use of the q_T -recoil procedure:

Catani, de Florian, Ferrera and Grazzini, arXiv:1507.06937 [hep-ph]

- Momenta of the Higgs bosons remain unchanged
- The new initial state partons momenta absorb the q_T due to the additional radiation
- Initial state momenta remain massless, and their transverse component goes to zero when q_T goes to zero (and then q_T -cancellation is not spoiled)

Finite M_t effects entering only via the Born amplitude: no information about real radiation

Full-theory approximation - NNLO_{FTapprox}

- Double real corrections can be computed in the full theory (one-loop amplitudes)
- Idea: construct an approximation in which they are treated in an exact way

We perform a subprocess-wise reweighting: for each n-loop squared amplitude

$$\mathcal{A}^{(n)}_{\mathrm{HEFT}}(ij \to HH + X)$$

we apply the reweighting

$$\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFT}}^{(0)}(ij \to HH + X)}$$

- Same partonic subprocess used for reweighting: no need for a projection
- Amplitudes that are tree-level in the HEFT are treated exactly
- At NLO this agrees with the FTapprox in Maltoni, Vryonidou and Zaro, arXiv:1408.6542 [hep-ph]
- Great performance at NLO (4% difference with full NLO) + full Mt dependence in double reals

Full-theory approximation - NNLO_{FTapprox}

- Double real corrections can be computed in the full theory (one-loop amplitudes)
- Idea: construct an approximation in which they are treated in an exact way

- Same partonic subprocess used for reweighting: no need for a projection
- Amplitudes that are tree-level in the HEFT are treated exactly
- At NLO this agrees with the FTapprox in Maltoni, Vryonidou and Zaro, arXiv:1408.6542 [hep-ph]
- Great performance at NLO (4% difference with full NLO) + full M_t dependence in double reals

Our best NNLO prediction

Numerical results

Setup of the calculation:

• M_h = 125GeV

$$M_t = 173 GeV$$

- PDF4LHC15 sets at each corresponding order
- Central scale value $\mu_0 = M_{hh}/2$ (smaller resummation effects)
- Scale uncertainties: 7-point variation
- Results for 13, 14, 27 and 100TeV
- No bottom quark contributions (effect below 1% at LO)
- No top quark width effects (2% at LO for the total cross section)

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78 {}^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
$NLO_{FTapprox}$ [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	±3.4%	$\pm 4.6\%$
$NNLO_{FTapprox}/NLO$	1.118	1.116	1.096	1.067

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78 {}^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
$NLO_{FTapprox}$ [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220{}^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224{}^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	B-proi > N	NLO-i > FTapprox
$\overline{\mathrm{NNLO}_{\mathrm{FTapprox}}/\mathrm{NLO}}$	1.118	1.116	5 proj > 1	νεο το ταρριολ

Increase with respect to NLO at 14TeV:

B-proj: 20%

NLO-i: 18%

FTapprox: 12% ◀

 $\sigma_{\mathrm{YR4}} = \sigma_{\mathrm{NNLL}}^{\mathrm{HEFT}} + \delta_t \, \sigma_{\mathrm{NLO}}^{\mathrm{HEFT}}$

 $\sigma_{\rm NLO}^{\rm exact} = \sigma_{\rm NLO}^{\rm HEFT} (1 + \delta_t)$

About 8% smaller than the current recommendation (YR4)

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69{}^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3 {}^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2{}^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9 {}^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	±4.6%
$NNLO_{FTapprox}/NLO$	1.118	1.116	1.096	1.067

- Size of perturbative corrections decreases with the energy for the FTapprox
- This doesn't happen for the other two approximations
- Not fully surprising: similar behavior for NLO K-factor

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88 \begin{array}{l} +13.5\% \\ -12.5\% \end{array}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	±3.4%	±4.6%
$NNLO_{FTapprox}/NLO$	1.118	1.116	1.096	1.067

- Strong reduction of the scale uncertainties at NNLO
- About a factor of 3 for the FTapprox at 14TeV

Even stronger reduction at 100TeV

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78 {}^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3 {}^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2{}^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9 {}^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$
$NNLO_{FTapprox}/NLO$	1.118	1.116	1.096	1.067

\sqrt{S}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$

- At NLO the FTapprox overestimates full NLO by 4% —— 11% for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9 {}^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.3\%$	$\pm 2.4\%$	$\pm 2.7\%$	±3.1%

- At NLO the FTapprox overestimates full NLO by 4% —— 11% for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1{}^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.3\%$	$\pm 2.4\%$	$\pm 2.7\%$	$\pm 3.1\%$
M_t unc. NNLO _{B-proj}	±14%	$\pm 15\%$	$\pm 20\%$	$\pm 36\%$

- At NLO the FTapprox overestimates full NLO by $4\% \longrightarrow 11\%$ for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

We can repeat the procedure for the Born-projected approximation

Compatible results even without the factor of 2

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	±2.3%	$\pm 2.4\%$	$\pm 2.7\%$	$\pm 3.1\%$
M_t unc. NNLO _{B-proj}	$\pm 14\%$	$\pm 15\%$	$\pm 20\%$	±36%

- But the difference between FTapprox and NLO-i increases with the collider energy faster than this uncertainty estimate
- To be more conservative, take half the difference between FTapprox and NLO-i

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25{}^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58{}^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69{}^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	±2.3%	$\pm 2.4\%$	$\pm 2.7\%$	±3.1%
M_t unc. NNLO _{B-proj}	±14%	$\pm 15\%$	±20%	±36%
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$

- But the difference between FTapprox and NLO-i increases with the collider energy faster than this uncertainty estimate
- To be more conservative, take half the difference between FTapprox and NLO-i

Differential distributions

Overlap with the NLO band

- NNLO_{B-proj} has wrong scaling in the tail
 No information about lowest order for p_{T,hh}
- NNLO FTapprox agrees with NNLO B-proj for low $p_{T,hh}$, and with NNLO NLO-i in the tail
- Distribution trivial at LO: NNLO is effectively NLO Large corrections and sizeable scale uncertainties

Differential distributions

Conclusions

- We **combined** the full NLO with the NNLO corrections computed in the HEFT
- Fully differential results, using q_⊤-subtraction
- NNLO piece improved via different reweightings to account for finite Mt effects
- Our best prediction includes the **full double-real loop-induced** amplitudes
- Increase with respect to NLO from 12% at 13TeV to 7% at 100TeV
- Remaining M_t uncertainty: few percent level
- Most advanced perturbative prediction for HH available to date

- Our proposal is to **update** the current **total XS** and M_t **uncertainties** recommendation (YR4) to the **NNLO**_{FTapprox} presented here
- For the moment, for distributions rescale NLO+PS by NNLO_{FTapprox} total XS
- Comments and suggestions are very welcome!

Thanks!

Numerical stability

• Loop-induced double real amplitudes can became unstable close to *dipole singularities*

Small
$$\ \alpha = \frac{p_i \cdot p_j}{\hat{s}}$$
 , i and j emitters

- Quadruple precision rescue non viable (~10 minutes per PS point for gg → HHgg)
- Using a too large cut on α spoils the qT-cancellation

Numerical stability

Solution: we introduced a new parameter, $\alpha_{L-i,cut}$, below which we approximate the loop-induced amplitudes by the Born reweighted HEFT

- We avoid evaluating the double real loop induced amplitudes in the unstable regions
- We can use a lower overall dipole cut \longrightarrow we don't spoil the qT-cancellation

$$\alpha_{\text{L-i,cut}} = 10^{-3} \text{ to } 10^{-5}$$

$$\alpha_{\rm cut} = 10^{-10}$$

Results independent in this range

Numerical stability

- Extrapolation to $r_{cut} \rightarrow 0$ via linear least χ^2 fit (vs quadratic in default MATRIX)
- Upper bound of the interval varied to get the best fit and uncertainty estimation

Differential distributions - M_{hh}

- Previous features enhanced at 100TeV
- Slower decrease in the tail of the distribution
- Larger separation between the different NNLO predicitons, smaller corrections for the FTapprox
- FTapprox different behavior at threshold even stronger: due to contributions from events with hard radiation

Differential distributions – $p_{T,hh}$

- Different behaviors are more pronounced at 100TeV
- Larger separation between FTapprox and NLO-i (almost full agreement in the tail)
- FTapprox agrees with B-proj for low $p_{\text{T,hh}}$

Differential distributions - y_{hh}

- Not very different behaviors between the different approximations (besides normalization)
- Largest shape difference in the central region for NLO-i

- Huge unphysical corrections in the tail for the B-proj approximation
- More pronounced differences between FTapprox and NLO-i compared to p_{T,hh}
- FTapprox predicts a softer spectrum, corrections contained in the NLO uncertainty band

Differential distributions - $p_{T,h1}$ and $p_{T,h2}$

Hardest Higgs pT spectrum:
 Large corrections in the tail of the B-proj approximation
 Good agreement between FTapprox and NLO-i

Softer Higgs pT spectrum:
 Similar shape for all approximations
 Larger NNLO scale uncertainties in the tail

Differential distributions - $\Delta \phi_{hh}$

- Trivial at LO: back-to-back. NNLO effectively NLO
- Large corrections above 50%, sizable scale uncertainties
- B-proj approximations predicts larger corrections in the region dominated by hard radiation
- Good general agreement between FTapprox and NLO-i, larger differences close to π