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HH production via gluon fusion
● NLO corrections are large (~66% at 14TeV), and with still sizeable uncertainties (~±13%)
 
● Beyond that: Higgs Effective Field Theory (HEFT)

● Corrections computed in the HEFT and typically normalized by exact LO differentially in Mhh

  

Top quark integrated out
Effective tree-level 
gluons-Higgs coupling

 

 

[S. Borowka et al.  arXiv:1604.06447]

● HEFT: large Mt limit → Worse than 
   for single Higgs (larger invariant mass)

● Born improved overestimates the 
  NLO total XS by a 15%
 
● Poor description of the tail of 
   some distributions

● To obtain accurate NNLO results, we need to combine the HEFT NNLO with the full NLO

● Moreover, we need to include finite Mt effects in the NNLO corrections 1



  

HH at NNLO with Mt effects

Higgs boson pair production at NNLO with top quark mass effects
M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. Lindert, JM [arXiv:1803.02463]

● Fully differential parton-level predictions for Higgs boson pair 
   production via gluon fusion

● Combination of full NLO with large-Mt NNLO

● NNLO piece improved with different reweighting techniques to account
  for finite-Mt effects

● Estimation of remaining Mt uncertainty at NNLO

● Most advanced perturbative prediction available to date
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Technical ingredients

Tree-level and one-loop amplitudes (HEFT and full-Mt) → OpenLoops

Full NLO (two-loop) virtual corrections → two dimensional grid + interpolation

Analytical results for NNLO two-loop corrections in the HEFT

[Catani, Grazzini, '07]

[Kallweit, Grazzini, Wiesemann, '17]

[de Florian, JM, '13]

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke, '16]

[Cascioli, Lindert, Maierhofer, Pozzorini]

NNLO subtraction formalism: qT-subtraction

Implementation based on public code MATRIX

 

 

  

 

 

● NLO-improved approximation – NNLONLO-i

● Born-projected approximation – NNLOB-proj

● Full-theory approximation – NNLOFTapprox

We worked with three 
different approximations for 
the pure NNLO piece:
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NLO-improved approximation – NNLONLO-i

 Simplest approach: for each bin of each histogram we do

Done originally in Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk and Zirke, arXiv:1608.04798 [hep-ph]

● Observable level reweighting, technically simple

● Finite Mt effects in the NNLO piece enter via the full NLO

● Has to be repeated for each observable and binning (bin size dependent!)

● We compute the total cross section based on the Mhh distribution
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Born-projected approximation – NNLOB-proj

 Reweight each NNLO event by the ratio of
  the full and HEFT Born squared amplitudes

 Different multiplicities (double real and real-virtual corrections)

Projection to Born kinematics needed

 We make use of the qT-recoil procedure:

● Momenta of the Higgs bosons remain unchanged

● The new initial state partons momenta absorb the qT due to the additional radiation

● Initial state momenta remain massless, and their transverse component
  goes to zero when qT goes to zero (and then qT-cancellation is not spoiled)

Finite Mt effects entering only via the Born amplitude: no information about real radiation

Catani, de Florian, Ferrera and Grazzini, arXiv:1507.06937 [hep-ph]
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Full-theory approximation – NNLOFTapprox

● Double real corrections can be computed in the full theory (one-loop amplitudes)

● Idea: construct an approximation in which they are treated in an exact way

We perform a subprocess-wise reweighting: for each n-loop squared amplitude

we apply the reweighting

● Same partonic subprocess used for reweighting: no need for a projection

● Amplitudes that are tree-level in the HEFT are treated exactly

● At NLO this agrees with the FTapprox in 

● Great performance at NLO (4% difference with full NLO) + full Mt dependence in double reals

Maltoni, Vryonidou and Zaro, arXiv:1408.6542 [hep-ph]

Our best NNLO prediction
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Full-theory approximation – NNLOFTapprox

● Double real corrections can be computed in the full theory (one-loop amplitudes)

● Idea: construct an approximation in which they are treated in an exact way

E.g. the squared amplitude:

is reweighted by:

● Same partonic subprocess used for reweighting: no need for a projection

● Amplitudes that are tree-level in the HEFT are treated exactly

● At NLO this agrees with the FTapprox in 

● Great performance at NLO (4% difference with full NLO) + full Mt dependence in double reals

Maltoni, Vryonidou and Zaro, arXiv:1408.6542 [hep-ph]

Our best NNLO prediction
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Numerical results

Setup of the calculation:

● Mh = 125GeV Mt = 173GeV

● PDF4LHC15 sets at each corresponding order

● Central scale value μ0 = Mhh/2 (smaller resummation effects)

● Scale uncertainties: 7-point variation

● Results for 13, 14, 27 and 100TeV

● No bottom quark contributions (effect below 1% at LO)

● No top quark width effects (2% at LO for the total cross section)

7



  

Total cross sections
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Total cross sections

B-proj > NLO-i > FTapprox

Increase with respect to NLO at 14TeV:

B-proj: 20%
NLO-i: 18%
FTapprox: 12% About 8% smaller than the

current recommendation (YR4)
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Total cross sections

● Size of perturbative corrections decreases with the energy for the FTapprox

● This doesn’t happen for the other two approximations

● Not fully surprising: similar behavior for NLO K-factor
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Total cross sections

Even stronger reduction
at 100TeV

● Strong reduction of the scale
   uncertainties at NNLO

● About a factor of 3 for the FTapprox
  at 14TeV
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Total cross sections
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Top quark mass uncertainties

● At NLO the FTapprox overestimates full NLO by 4% 11% for the pure NLO contribution

● Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO

● Multiply by a factor of 2 to be more conservative (14TeV)
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Top quark mass uncertainties

 

● At NLO the FTapprox overestimates full NLO by 4% 11% for the pure NLO contribution

● Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO

● Multiply by a factor of 2 to be more conservative (14TeV)
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Top quark mass uncertainties

● At NLO the FTapprox overestimates full NLO by 4% 11% for the pure NLO contribution

● Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO

● Multiply by a factor of 2 to be more conservative (14TeV)

 We can repeat the procedure for the Born-projected approximation

 Compatible results even without the factor of 2
9



  

Top quark mass uncertainties

● But the difference between FTapprox and NLO-i increases with the collider energy
  faster than this uncertainty estimate

● To be more conservative, take half the difference between FTapprox and NLO-i
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Top quark mass uncertainties

● But the difference between FTapprox and NLO-i increases with the collider energy
  faster than this uncertainty estimate

● To be more conservative, take half the difference between FTapprox and NLO-i

Small difference for LHC, more conservative for larger energies
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Differential distributions

● B-proj and NLO-i have similar behaviors

● FTapprox presents larger corrections at threshold,
  minimum corrections at Mhh ~ 400GeV, slow 
  increase towards the tail

● Scale uncertainties are substantially reduced

● Overlap with the NLO band

● NNLOB-proj has wrong scaling in the tail
   No information about lowest order for pT,hh

● NNLOFTapprox agrees with NNLOB-proj for low pT,hh,
  and with NNLONLO-i in the tail

● Distribution trivial at LO: NNLO is effectively NLO
  Large corrections and sizeable scale uncertainties

14TeV 14TeV



  

Differential distributions

Discussed in 
backup slides
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Conclusions

● We combined the full NLO with the NNLO corrections computed in the HEFT

● Fully differential results, using qT-subtraction

● NNLO piece improved via different reweightings to account for finite Mt effects

● Our best prediction includes the full double-real loop-induced amplitudes

● Increase with respect to NLO from 12% at 13TeV to 7% at 100TeV

● Remaining Mt uncertainty: few percent level

● Most advanced perturbative prediction for HH available to date

● Our proposal is to update the current total XS and Mt uncertainties
  recommendation (YR4) to the NNLOFTapprox presented here

● For the moment, for distributions rescale NLO+PS by NNLOFTapprox total XS

● Comments and suggestions are very welcome!

Thanks!



  

Backup slides



  

Numerical stability
● Loop-induced double real amplitudes can became unstable close to dipole singularities

Small                          , i and j emitters 

● Quadruple precision rescue non viable (~10 minutes per PS point for gg→HHgg)

● Using a too large cut on α spoils the qT-cancellation



  

Numerical stability

Solution: we introduced a new parameter,  , below which we approximate

the loop-induced amplitudes by the Born reweighted HEFT

● We avoid evaluating the double real loop induced amplitudes in the unstable regions

● We can use a lower overall dipole cut           we don’t spoil the qT-cancellation

Results independent in this range



  

Numerical stability

FTapprox, 14TeV

Variations below 0.2%

 

Extrapolation uncertainty
of ±0.14%

● Extrapolation to rcut → 0 via linear least χ2 fit (vs quadratic in default MATRIX)

● Upper bound of the interval varied to get the best fit and uncertainty estimation



  

● Previous features enhanced at 100TeV

● Slower decrease in the tail of the distribution

● Larger separation between the different NNLO predicitons, smaller corrections for the FTapprox

● FTapprox different behavior at threshold even stronger: due to contributions from events with hard radiation 

Differential distributions – Mhh



  

Differential distributions – pT,hh

● Different behaviors are more pronounced at 100TeV

● Larger separation between FTapprox and NLO-i (almost full agreement in the tail)

● FTapprox agrees with B-proj for low pT,hh



  

● Not very different behaviors between the different approximations (besides normalization)

● Largest shape difference in the central region for NLO-i

Differential distributions – yhh



  

● Huge unphysical corrections in the tail for the B-proj approximation

● More pronounced differences between FTapprox and NLO-i compared to pT,hh

● FTapprox predicts a softer spectrum, corrections contained in the NLO uncertainty band

Differential distributions – pT,j1



  

Differential distributions – pT,h1 and pT,h2

● Hardest Higgs pT spectrum:
  Large corrections in the tail of the B-proj approximation
  Good agreement between FTapprox and NLO-i

● Softer Higgs pT spectrum:
  Similar shape for all approximations
  Larger NNLO scale uncertainties in the tail



  

Differential distributions – Δφhh

     

● Trivial at LO: back-to-back. NNLO effectively NLO

● Large corrections above 50%, sizable scale uncertainties

● B-proj approximations predicts larger corrections in the region dominated by hard radiation

● Good general agreement between FTapprox and NLO-i, larger differences close to π
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