

14th Workshop of the LHC Higgs Cross Section Working Group

DMWG Report on 2HDM activities

Johanna Gramling (UC Irvine) on behalf of the LHC DMWG

Why consider "less simplified models" like 2HDM? AILAS

- Simplified Models used as benchmarks for several signatures (more details <u>here</u>)
 - not gauge invariant \Rightarrow unitarity violating amplitudes
- 2HDM are well-motivated extension of SM
 - Add in extra (pseudo-)scalar to couple to (SM singlet) DM
- Many signatures relevant!

niversity of

California, Irvine

- Mono-Z and mono-h always weaker in Simplified Models, now very relevant due to possible resonant production! 9 20000
- \rightarrow compare, confront, combine different search strategies
- Sufficiently complete, but simplified enough to define grid planes in parameter space g 100000
 - Can be relatively easily reused/recast by theorists

H

t

The Model

Particle Content

- CP-even bosons: h, H
- CP-odd bosons: A, a
- Charged bosons: H[±]
- Dirac DM χ
- Spin-0 models with fermionic DM can be made SU(2)_L×U(1)_Y invariant by introducing a **new dark Higgs** that couples to visible scalar sector
- If scalar sector minimal, SM Higgs is mediator → Higgs constraints are severe
- Higgs constraints can be avoided in extensions with 2 Higgs doublets (assuming decoupling or alignment limit)
 - Add **pseudo-scalar mediator** to couple to DM
- Impose softly broken Z(2) symmetry to avoid FCNCs
- Focus mostly on Yukawa structure of type-II

Iniversity of

California, Irvine

• Signatures largely independent of type*, but more or less prominent

Model	up-type	down-type	leptons
Type I	H_2	H_2	H_2
Type II	H_2	H_1	H_1
Type III (X)	H_2	H_2	H_1
Type IV (Y)	H_2	H_1	H_2

*holds true for gluon-fusion initial states

- Parameter space can be reduced by constraints/assumptions
- Assumptions
 - Lightest CP-even boson (h) is SM Higgs
 - Choose $M_h = 125 \text{ GeV}, v = 246 \text{ GeV}$
 - Alignment limit:
 - Choose $\cos(\beta \alpha) = 0$
 - Otherwise, tan(β) affected by constraints from Higgs coupling measurements

- Parameter space can be reduced by constraints/assumptions
- Assumptions
 - Lightest CP-even boson (h) is SM Higgs
 - Choose $M_h = 125 \text{ GeV}, v = 246 \text{ GeV}$
 - Alignment limit:

ifornia, Irvine

- Choose $\cos(\beta \alpha) = 0$
- Otherwise, tan(β) affected by constraints from Higgs coupling measurements
- Mass splittings between M_a, M_A, M_H, M_H[±] constrained by electroweak precision measurements

 \rightarrow circumvented in case of M_H = M_H[±] and cos(β - α)=0

• Choose $M_A = M_H = M_{H^{\pm}}$ (also to simplify life - for now!)

parameters			
v, M _h , cos(β - α)			
Ma, MA, MH, MH [±]			
$tan(\beta), cos(\theta)$			
λ3, λρ1, λρ2, λρ			
M_{χ} , y _{\chi}			

Assumptions (continued)

University of

- Vacuum stability, perturbativity and unitary constrains affect quartic couplings
 - In particular: boundedness from below requires $\lambda_3 \ge M_h^2/v^2 = 0.258$ \rightarrow allowed param space increases with λ_3

• Assumptions (continued)

- Vacuum stability, perturbativity and unitary constrains affect quartic couplings
 - In particular: boundedness from below requires $\lambda_3 \geq M_h{}^2/v^2$ = 0.258
 - \rightarrow allowed param space increases with λ_3
 - But:

 g_{aAh} decreases with increasing λ_3 except if $\lambda_3 \approx \lambda_{P1} \approx \lambda_{P2}$ $\rightarrow g_{aAh}$ important for mono-h signatures!

• On the other hand:

 $\Gamma(H \rightarrow aa)$ enhanced with λ_3 , therefore BR(H \rightarrow Za) reduced \rightarrow mono-Z most sensitive for small $\lambda_{P1} \approx \lambda_{P2}$ or sufficient splitting

→ Choose $\lambda_3 = \lambda_{P1} = \lambda_{P2} = 3$

(not ideal for mono-Z, but compromise between mono-h and mono-Z)

Summary of Model

- Additional parameters for DM: mass M_{χ} and coupling y_{χ}
 - Choose $y_{\chi} = 1$

Ma: mass of mediator a

 $M_{\ensuremath{\textbf{A}}\xspace{-}:}$ mass of heavy pseudo scalar A

 $sin(\theta)$: mixing angle between a and A

tan(β): ratio of VEVs of Higgs doublets

 \mathbf{M}_{χ} : DM mass

Iniversity of

Alternative: Scalar Mediator ATLAS

- Similar model: add scalar mediator to 2HDM
 → differently affected by limits from direct and indirect DM searches
 - Direct detection: scalar model much more constrained by spin-independent bounds, due to existing tree level contributions (pseudoscalar model: only loop-level contributions)
 - Indirect detection: bounds more stringent for pseudoscalar model (DM annihilation is s-wave) than for scalar model (DM annihilation is p-wave)
- Similar topologies at LHC, different production rates
 - cross section for gluon-fusion of scalar particle generally smaller than that of pseudoscalar

 \Rightarrow mono-Z larger in scalar model:

 $pp \rightarrow A \rightarrow sZ$ (scalar model) vs. $pp \rightarrow H \rightarrow aZ$ (pseudoscalar model) with $\sigma(pp \rightarrow A) > \sigma(pp \rightarrow H)$

Particle Content

- CP-even boson: h
- CP-odd boson: A
- neutral scalars: S₁, S₂
- Charged bosons: H[±]
- Dirac DM χ

Parameter Scans

2D Scan in M_a-M_A

Fixed parameters: $tan(\beta) = 1.0$, $sin(\theta) = 0.35$, $M_{\chi} = 10$ GeV

- Motivation: highlight complementarity of mono-h and mono-Z
- E_T^{miss} shape depends crucially on $|M_A - M_a|$ (mono-h) / $|M_H - M_a|$ (mono-Z)
 - Jacobian peak for resonant production

2D Scan in M_a- tan(\beta)

Fixed parameters: $M_A = 600 \text{ GeV}$, $\sin(\theta) = 0.35$, $M_{\chi} = 10 \text{ GeV}$

Motivation:

California, Irvine

- Highlight complementarity between all signatures
- Parameterisation commonly used for constraints on 2HDMs
- DM+tt and mono-jet mostly sensitive for $tan(\beta) < 0.4$
- Caveat: perturbative top Yukawa requires $tan(\beta) > 0.4$

Two 1D Scans in sin(\theta)

Fixed parameters: $tan(\beta) = 1$, $M_{\chi} = 10$ GeV

Scan 1: $M_a = 200 \text{ GeV}, M_A = 600 \text{ GeV}$ Scan 2: $M_a = 350 \text{ GeV}, M_A = 1000 \text{ GeV}$

Motivation:

niversity of

- Interplay between resonant and non-resonant production (mono-h and mono-Z)
 - 2-body (where a Jacobian peak occurs) and off-shell/3-body production
- DM+tt and DM+bb more sensitive at higher $sin(\theta)$
 - Choice of $tan(\beta) = 1.0$ not optimal for DM+tt and DM+bb
 - \rightarrow set tan(β) different from 1.0 in 1D scans for these signatures

1D scan in M_{\chi}

Fixed parameters: $M_a = 250 \text{ GeV}$, $M_A = 600 \text{ GeV}$, $tan(\beta) = 1$, $sin(\theta) = 0.35$

- **Motivation**: study signature-specific dependence on M_{χ} , relevant for relic density constraints
 - Interesting for future studies: higher values of M_{χ} preferred by relic density
 - Currently focus on lower M_{χ} to have sufficiently high cross sections

Iniversity of

Signatures profiting from possible resonant production

	Non-resonant production/ also present in simplified model	Resonant production/ new in 2HDM!
mono-h(bb)	$g \xrightarrow{g} \overline{ooot} \xrightarrow{t} \xrightarrow{h} \xrightarrow{h} \xrightarrow{t} \xrightarrow{t} \xrightarrow{t} \xrightarrow{\chi} g \xrightarrow{g} \overline{ooot} \xrightarrow{f} \xrightarrow{t} a \xrightarrow{\chi} \overline{\chi}$	g
mono-Z (lep and had)	$g \xrightarrow{g} \overline{0000} \xrightarrow{t} \xrightarrow{\chi} t$	g do t H χ g rootoot t t H χ
DM+t(W)	g	g

Mono-h

- M_A , M_a change Jacobian peak in E_T^{miss} \rightarrow higher E_T^{miss} for higher M_A , lower M_a
- decay widths of A and a depend on M_H
 → affects ratio of resonant/non-resonant production
- mixing of a and A (sin(θ)) affects E_T^{miss}
 - low sin(θ): resonant production dominant

California, Irvine

• $sin(\theta) > 0.7$: 3-body (offshell) gives broad low- E_T^{miss} peak

Mono-h

- At high tan(β), bb initial state gets relevant everywhere else gluon fusion dominates
- $tan(\beta)$ only varies E_T^{miss} in cases where resonant production is possible
 - Small tan(β): top Yukawa large \rightarrow non-resonant production dominant
- M_{χ} changes cross-section and E_T^{miss} , depending on the mass hierarchy of A, a, H, h

California, Irvine

Mono-Z

- Resonant process $H \rightarrow aZ$ gives Jacobian peak in E_T^{miss}
 - Peak depends on M_H and M_a , broader for higher masses
 - Suppressed for diagonal (M_a≈M_A)
- For $M_a < M_A$, DM dominantly from on-shell a, for $M_a > M_A$ mostly $H \rightarrow \chi \chi$
- If |M_a M_A| < M_Z, non-resonant production dominant
 → sensitivity decreases
- For M_a < 350 GeV cross section increases with sin(θ), for M_a > 350GeV, a → tt accessible ⇒ cross section decreases for high sin(θ)

Most sensitive for lower tan(β)

Iniversity of

tanß

10

California, Irvine

Signatures without resonant production modes

DM + heavy flavour

• Signal samples: rescaling possible from Simplified Model

- small tan(β): couplings of A and a to down-type quarks are heavily suppressed irrespectively of the Yukawa assignment
 → DM+bb needs high tan(β)
- Kinematics don't depend on $tan(\beta)$ or $sin(\theta)$
- E_T^{miss} and leading and trailing top quark p_T distributions get harder with increasing M_a
 - For $M_A < M_a$ same trend with M_A

Iniversity of

- Usually $a \rightarrow \chi \chi$ is dominant, but depends on tan(β)
- Interesting bounds also on model with scalar mediator

Other signatures

- (DM+) tth / (DM+) ttZ:
 - can have sizeable contribution, importance depends on model parameters
 - further studies needed to understand interplay and complementarity wrt other signatures
- ttbar resonance:

Jniversity of

- interference effects between signal and SM tt distort signal shape
- recent analysis: (pseudo-)scalar masses of 500 - 650GeV probed in a minimal 2HDM
 → similar range possible for 2HDM+a
- 4 tops:
 - rare but increasingly important signature
 - interesting complementarity with DM + tt

Conclusions and Outlook

- Taking the step from Simplified Models for DM production to 2HDM-like extensions allows for
 - consistent theoretical framework
 - rich phenomenology
 - interesting interplay between signatures due to possible resonant production
- Constraints and model assumptions allow to reduce free parameters
 - Proposed following scans: M_a - M_{A_1} , M_a -tan(β), sin(θ), M_{χ}
 - Presented results from different signatures
- Results and studies summarised in <u>DMWG white paper</u> (work in progress!)
 - Future possibilities

ifornia. Irvine

•

- Relax assumption on mass hierarchy \rightarrow affects possible collider signatures
- Include di-boson searches \rightarrow give up alignment limit
- Comparison with direct and indirect DM searches

Points of contact with efforts of HXSWG

What are the main differences between the models we are using?

- HXSWG (based on https://arxiv.org/pdf/1610.07922.pdf):
 - different 2HDM scenarios \rightarrow no DM
 - inert 2HDM \rightarrow one of the Higgses is DM, different phenomenology
 - Largest overlap: 2HDM and SM singlet \rightarrow DM would be spin-0
 - For us: fermionic DM
 - NMSSM scenarios \rightarrow possible overlap

Which aspects of our model would be most interesting for you and where could we collaborate?

- Comments and discussion very welcome!
 - Contact: <u>lhc-dmwg-contributors@cern.ch</u>

٠

٠