News Experience from the LHCTopWG

Markus Seidel

CERN

March 26, 2018

The LHC Top working group

Goals

- Combination of the results of the experiments
 - \rightarrow improve precision, evaluate compatibility
- Study of the experimental and theoretical systematic uncertainties
- Definition of measurements and tools (MC generators, theory calculations,)
- Presentation of the results in a way useful for the theoretical interpretation

Members:

- ATLAS: M. Owen (ATLAS contact), E. Shabalina, R. Schwienhorst (ATLAS top WG conveners)
- CMS: M. Mulders (CMS contact), R. Gonzalez, M. Aldaya (CMS top WG conveners)
- LHCb: S. Farry (LHCb contact)
- LPCC: M. Mangano (LPCC contact)
- + combination contacts + task force contributors + theorists

Combination working groups and results

Top pair cross section

	ATLAS CONF-2012-134	CMS PAS-TOP-12-003	(7 TeV)					
	ATLAS CONF-2014-054	CMS PAS-TOP-14-016	(8 TeV)					
■ Single top cross section (all 8 TeV)								
	ATLAS CONF-2013-098	CMS PAS-TOP-12-002	(t-channel)					
	ATLAS CONF-2014-052	CMS PAS-TOP-14-009	(tW channel)					
■ Top mass (all 7 TeV)								
	ATLAS CONF-2012-095	CMS PAS-TOP-12-001						
	ATLAS CONF-2013-102	CMS PAS-TOP-13-005						
■ arXiv 1403.4427 (LHC+Tevatron world combination)								
Charge asymmetry								

- ATLAS CONF-2014-012 CMS PAS-TOP-14-006 (7 TeV)
 arXiv 1709.05327 (7+8 TeV)
- Differential distributions
- \blacksquare Top quark pair production in association with Z or W
- W helicity

ATLAS CONF-2013-033 CMS PAS-TOP-12-025

(7 TeV)

Ongoing combinations

- Top pair cross section
 - Combination of final 8 TeV measurements
- Single top cross section
 - Run-1 combination for all production modes and V_{tb}
- Differential distributions
 - Combination of 8 TeV parton level distributions
 - Preparation for 13 TeV combination

Top mass

- Preparation for Run-1 combination
- Longer term: updated world combination

Summary plots

 \blacksquare > 30 plots, updated regularly

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

Combination method

- Full likelihood combinations difficult to perform after publications
- So far only: BLUE method, linear combination with the smallest overall uncertainty
 - Uncertainties and their correlations need to be known exactly arXiv 1307.4003 arXiv 1610.00422
 - In practice: uncertainties have (stat.) uncertainties, correlations can only be estimated

Estimating the correlations

- Describe uncertainty X by nuisance parameter $-1\sigma \leq \lambda_X \leq +1\sigma$
- If λ_X^{CMS} updated to $+1\sigma$, what follows for λ_X^{ATLAS} ?
 - \blacksquare uncertainty for ATLAS needs to be updated in same way $\rightarrow \rho = 1$
 - \blacksquare Sometimes the uncertainty effect is in opposite directions, behaves like $\rho=-1$
 - no prediction on shift in ATLAS possible → ρ = 0 (either shift is uncorrelated or starting point was different)
 - uncertain $\rightarrow \rho = 0.5$
- High correlation not always more conservative: can lead to negative weights and reduced overall uncertainty. CMS-internal combinations often restrict $\rho \leq \sigma_{min}/\sigma_{max}$
- Stability checks are performed with variations of correlation assumptions

Charge asymmetry arXiv 1709.05327

OP Mass Atlas CONF-2013-102

	ATLAS	CMS	ρ	Combined	Uncertainty Categories		Size [GeV]					Correlation			
AC	0.0090	0.0033	0.13	0.0055	T	ATLAC	CMC	AT	LAS	2011	CMS	2011	LHC	ρ_{exp}	PLHC
Statistical (data)	0.0044	0.0026	0	0.0023	. levatron	AILAS	CMS	l+jets	2011 di-l	l+iets	di-l	alliets	comb		
Statistical (simulation)	0.0010	0.0015	0	0.0010	-	Measured mtop		172.31	173.09	173.49	172.50	173.49	173.29		
Detector model (excluding IES)	0.0010	0.0010	0	0.0010		Jet Scale Factor		0.27		0.33					
Delector model (excluding JES)	0.0000	0.0004		0.0004	1770	bJet Scale Factor		0.67		0.00			0.01	-	-
Leptons	0.0003	0.0001	0	0.0001	IJES	Sum (statistical comp.)		0.72	0.72	0.33	0.00	0.60	0.26	0	0
Jet energy resolution	0.0005	0.0004	0	0.0003	dIES	s in-situ $\alpha/7$ IES comp.		0.61	0.73	0.24	0.69	0.69	0.29	1	0
b-tagging	0.0004	0.0007	0	0.0005	ajto	intercalib. IES comp.		0.19	0.39	0.01	0.08	0.08	0.07	1	0.5
Missing transverse momentum	0.0002	_	_	0.0001	aJES	flavour JES comp.		0.36	0.02	0.11	0.58	0.58	0.16	1	0.0
Pile-up		0.0003		0.0002	bIES	b-iet energy scale		0.08	0.71	0.61	0.76	0.49	0.43	1	0.5
The-up		0.0005		0.0002		MC Ge	nerator	0.19	0.20	0.02	0.04	0.19			
Jet energy scale					110	Hadronisation		0.27	0.44	0.02	0.04	0.10	0.14		
Uncorrelated JES	0.0010	0.0004	0	0.0005	MC	ICP / ECP	ım	0.33	0.48	0.02	0.04	0.19	0.14	1	1
Partially correlated JES	0.0009	0.0010	0.5	0.0008		13K/13K	O ² -scale	0.45	0.37	0.24	0.55	0.22			
Mostly correlated IES	0.0002	0.0004	1	0.0003	nal		Jet-Parton scale			0.18	0.19	0.24			
Fully correlated IFS	0.0009	0.0008	1	0.0008	S Rad	Su	ım	0.45	0.37	0.30	0.58	0.33	0.32	1	1
	0.0007	0.0000	1	0.0000	CR CR	Colour reconnection		0.32	0.29	0.54	0.13	0.15	0.43	1	1
Signal modelling					-	Underlying event		0.12	0.42	0.15	0.05	0.20	0.17	1	1
Event generator	0.0004	0.0002	1	0.0003	PDF	Proto	n PDF	0.17	0.12	0.07	0.09	0.06	0.09	1	1
Parton shower and hadronisation	0.0004	_	_	0.0002		Jet Resolution		0.05	0.21	0.25	0.14	0.15			
Scale/radiation	0.0009	0.0014	1	0.0012		Emiss		0.03	0.05	0.06	0.12				
PDF	0.0007	0.0002	1	0.0004	DetMod	Sum		0.23	0.22	0.24	0.18	0.28	0.20	1	0
	0.0007	0.0002	1	0.0004		b-tagging		0.81	0.46	0.12	0.09	0.06	0.25	1	0.5
Integrated luminosity		0.0001	_	0.0001	LepPt	Lepton rec	onstruction	0.04	0.12	0.02	0.14		0.01	1	0
Backgrounds Background from MC		0.10	0.14	0.13	0.05	0.12	0.08	1	1						
Single-top-guark / Z+jets	0.0001	0.0004	1	0.0003	-	Mathod	Pata	0.10	0.07	0.06	0.40	0.13	0.04	0	0
Multijet	0.0005	0.0018	0	0.0011	Multiple Hadronic Interactions		0.13	0.07	0.08	0.40	0.13	0.05	1	1	
W+iets	_	0.0002	_	0.0001	Statistics		0.23	0.64	0.27	0.43	0.69	0.23			
Method 0.0003				0.0001	Systematics		1.53	1.50	1.03	1.46	1.23	0.92			
Systematic uncertainty	0.0025	0.0033		0.0025	·		Total Uncertainty	1.55	1.63	1.06	1.52	1.41	0.95	1.0.11	
Tatal uncertainty	0.0023	0.0033		0.0023	Comb. Coeff. [%] 22.6 3.6 60.6 -8.4 21.6 χ^2		χ^2/ndf	/ndt = 1.8/4							
iotal uncertainty	0.0051	0.0041		0.0034			Pull	+0.80	-0.15	0.41	-0.67	0.19	χ- prob	= / /%	

 Correlations need to be defined between ATLAS and CMS (ρ_{LHC}) but even for different measurements within experiments (ρ_{exp}) or between different years (ρ_{year})

Jet/MET task force

- Task: proper grouping of the systematic sources related to JES uncertainties
- Work by ATLAS and CMS Jet/MET groups, to be used by everyone (not only TOP)

ATLAS PHYS-PUB-2014-020 CMS PAS-JME-14-003 (7 TeV) ATLAS PHYS-PUB-2015-049 CMS PAS-JME-15-001

(8 TeV)

Description	Componente CMS	Components ATT AC	Corr.	19.7 fb ⁻¹ (8 TeV)				
Description	Components, CIVIS	Components, ATLAS	range	S CMS Total uncertainty				
1a. Statistical <i>in situ</i> terms	AbsoluteStat, SinglePionHCAL, RelativeStat[FSR][EC2][HF]	[11] Z-jet balance stat./meth. terms (p_T) , [13] γ -jet balance stat./meth. terms (p_T) , [10] multi-jet balance stat./meth. terms (p_T) , η -intercalibration statistical term (p_T, η)	0%	E Frequencies Term Excl. flavor, time Term Abolute scale Term Abolute scale Term Abolute scale Pieup (10)=20) → Jet flavor (QCD) → Time stability → Time stability				
1b. Detector in situ terms	AbsoluteScale, SinglePionECAL, RelativeJER[EC1][EC2][HF], RelativePt[BB][EC1][EC2][HF]	$ \begin{array}{l} \mbox{Z-jet balance det. term,} \\ \mbox{γ-jet balance det. term,} \\ \mbox{[2] correlated $Z/$$\gamma$-jet balance det. terms($p_T$)} \end{array} $	0%					
2. Absolute balance model- ing	AbsoluteMPFBias	 [7] Z-jet balance model + mixed terms (p_T), [4] γ-jet balance model + mixed terms (p_T), [2] correlated Z/γ-jet balance terms (p_T), [5] multi-jet balance model + mixed terms (p_T) 	0-50%	20 100 200 D (GeV)				
 Relative balance model- ing 	RelativeFSR	η -intercalibration modeling ($p_{\rm T}, \eta$)	50-100%	μ _T (συν)				
g-jet fragmentation	FlavorPureGluon	Flavor response (p_T, η)	100%					
b-jet fragmentation	FlavorPureBottom	b-jet response (p _T)	50-100%					
6. Other fragmentation types	FlavorPureQuark, FlavorPureCharm	Flavor composition (p_T, η)	0%	Each analysis needs to				
7. Pileup	PileupDataMC, PileupPt[Ref][BB][EC1][EC2][HF]	N_{PV} offset $(p_{\text{T}}, \eta, N_{\text{PV}})$, $\langle \mu \rangle$ offset $(p_{\text{T}}, \eta, \langle \mu \rangle)$, p_{T} term $(p_{\text{T}}, \eta, N_{\text{PV}}, \langle \mu \rangle)$, ρ topology (p_{T}, η)	0%	evaluate all uncertainty				
8. High-p _T	Fragmentation	High- $p_{\rm T}$ ($p_{\rm T}$)	0%	courses constally				
9. Single-experiment terms	TimeEta, TimePt	Fast simulation closure (p_T, η) , punch-through $(p_T, \eta, N_{\text{segments}})$	0%	sources separately!				

Markus Seidel (CERN)

b tagging task force

• Task: grouping of the systematic sources related to b-tagging

b-tagging uncertainty category	Correlated with top analysis	Correlated between ATLAS and CMS		
General physics modelling	VES	VES		
(parton shower etc.)	125	125		
Specific physics modelling				
(B hadron energy spectrum,	NO (ATLAS)	YES		
μ $p_{ m T}$ modelling etc.)	YES (CMS)			
Detector modelling	VES	NO		
(calorimeter response, pile-up etc.)	TES	NO		
Calibration method specific	NO	NO		

(from Liza Mijovic)

■ For details, see slides from open meetings May 2014, Nov 2015

Radiation and generators task force

 Task: comparing the definition of systematic sources coming from the modelling of radiation in the MC, and in general for generator settings in the two experiments

Differences in $\ensuremath{t\bar{t}}\xspace$ modeling uncertainties

- ME generators
 - Run1: ATLAS Powheg vs. MC@NLO CMS MadGraph vs. Powheg
 - Run2: Powheg vs. MG5_aMCatNLO (but CMS uses FxFx merging)
- Radiation uncertainty
 - ATLAS Tune A14 radiation variation, combined with Powheg $\mu_{F,R}$ and hdamp (2 samples)
 - **CMS** Powheg $\mu_{F,R}$ (weights) \oplus Powheg hdamp \oplus Pythia ISR \oplus Pythia FSR (1+6 samples)

Hadronization uncertainty

- ATLAS Powheg+Pythia 8 vs. Powheg + Herwig 7
- **CMS** JEC flavor (Pythia 6 vs. Herwig++) \oplus b fragmentation \oplus BR $B \rightarrow \ell \nu X$
- Top p_T modeling
 - ATLAS covered by Pythia vs. Herwig CMS explicit variation
- Color reconnection
 - Run1: ATLAS on vs. loCR CMS on vs. off

Modeling correlations

- Generator uncertainties are usually treated as correlated ($\rho = 1$) by their anticipated effect, sometimes requires a more inclusive regrouping
- Example: radiation uncertainty
 - ATLAS Tune A14 radiation variation, combined with Powheg $\mu_{F,R}$ and hdamp (2 samples)
 - **CMS** Powheg $\mu_{F,R}$ (weights) \oplus Powheg hdamp \oplus Pythia ISR \oplus Pythia FSR (1+6 samples)

 \rightarrow similar net effect: more/less radiation

Markus Seidel (CERN)

More "auxiliary" measurements

Regular discussion with theorists:

- Which sets of modeling uncertainties should be used?
- Which measurements for constraining them can be done directly in top quark events?

News Experience from the LHCTopWG

Common MC sample

- Working on a common MC sample for correlation studies (selection and systematics)
- Many paths possible:

Jay Howarth

- First success: ATLAS recreated CMS Powheg+Pythia 8 sample
- Exact requirements are still to be defined (do we need identical event numbers?)
- Do we need both ATLAS and CMS tunes, or can we agree on a neutral one? 1

Common acceptance and pseudo-tops task force

 Task: defining common conventions for a pseudo-top definition and acceptance where both experiments should quote fiducial cross sections

- 8 TeV parton level: Full phase space, top quark definition and binning already compatible
- Pseudo-top = top defined by decay products at particle level, no dependence on generator record
- Definition still work in progress, need improvements
 CMS NOTE-2017-004
- Need to resolve jet clustering: include neutrinos?
- Ideally: define a common Rivet analysis with clear physics goals (theory-input!), optimize binning from combined ATLAS+CMS migration matrix

Summary

LHCTopWG very successful in core objective: getting combinations done!

- Main workhorse: BLUE method
- Lot of thought-work for correlation estimates (experiments, channels, years)
- Study of systematic uncertainties
 - Very complete agreements on treatment of JEC and b tag uncertainties
 - Harmonization of modeling uncertainties often difficult after publication
 - "Helper" measurements performed by both experiments and discussed together
- Combinations of one number $(\sigma_{t\bar{t}}, m_t)$ still relatively straightforward \leftrightarrow combination of diff. measurements requires even more effort on common definitions
- Next LHCTopWG open meeting: 15-16 May, https://indico.cern.ch/event/708573/