

by Walter M. Bonivento

CERN-SPSC-2015-017 SPSC-P-350-ADD-1 9 April 2015

SHiP

CERN-SPSC-2015-016 SPSC-P-350 8 April 2015

Search for Hidden Particles

Streamed week-reachinests, and ancomposed a humain can then they had not with bother in the chale rayage. Sone particles and a press with near the week. The cases of the Phila case a come and a log they also picked up a trick which appeared to have been carred with a irre track, a given of case, a glast chick press on law, and a board The crass of the Aira and other times of law, and a stable basised with race berries. There are an experience there, and they all press charter (I. Sales) this clay time to reace, in cases.

After water steared their wijned course was not saled inselve order on hour ill two bours ofter visiophit, point where other, which one twenty two largues not a half not are the Parta was the righter rate, and kept ahear of the Adrived,

the incovered low

Search for Hidden Particles

Stream water much was, and an universal a busines are then they but pat with before in the abole supple. Say peoplets and a prese water was the second The area of the Point can a case and a log, they doe picked up a stick which appeared to have been carred with a iron tool, a given of case, a glast which press on low, and a board. The cases of the None was other times of low, and a week's lowbal with rows bearies. These time encoursed there, and they all press charter is Saked this also the states, turning-reven leapure

After water stream their original course was not when turke riles a bow till two hours after rishiphit, pring ninety riles, which are turking in largues and a helf and as the Phila we the sufferst rater, and kept dread of the failand,

the Nacional law

Physics Proposal

What is SHiP?

SHiP is a PROTON BEAM DUMP experiment proposed at CERN with the SPS p beam of 400GeV with 2x10²⁰pot/5 years

It would make good use of the full SPS intensity that, apart from the ~2fill/day of the LHC, is not exploited

PROTON BEAM DUMPS: THE PAST

Experiment	Location	approx. Date	Amount of Beam (10 ²⁰ POT)	Beam Energy (GeV)	Target Mat.	Ref.
CHARM	CERN	1983	0.024	400	Cu	[16]
PS191	CERN	1984	0.086	19.2	Be	[17, 18]
E605	Fermilab	1986	4×10^{-7}	800	Cu	[19]
SINDRUM	SIN, PSI					• •
ν-Cal I	IHEP Serpukhov	1989	0.0171	70	Fe	[20-22]
LSND	LANSCE	1994-1995 1996-1998	813 882	0.798	H20, Cu W,Cu	[23]
NOMAD	CERN	1996-1998	0.41	450	Be	[18, 24]
WASA	COSY	2010		0.550	LH2	[25]
HADES	GSI	2011	0.32pA*t	3.5	LH2,No,Ar+KCI	[26]
		2003-2008	6.27		Be	[27]
MiniBooNE	Fermilab	2005-2012	11.3	8.9	Be	[28]
		2013-2014	1.86		Steel	[29]

+ DONUT

FNAL

3.6x10⁻³

W

800

Figure of merit:

#(ν_{τ})SHiP/DONUT=600

#(HNL)SHiP/CHARM=10k

B

NorwayUkraine School- CERN 7- Nov 2017

Critical technical studies under PBC as specified in the SHiP Technical Proposal

Main new technological challenge compared to LNGS: the slow extraction of the whole SPS beam Tested this year!

—> long lifetimes

INFN

- to SM

coupling to:

- fermions

- photons

DIRECT DETECTION: long list of models that we can test in unexplored parameter domains

DIRECT EVIDENCE OF NP : DETECTION of dark matter particles with masses below few GeV

DIRECT EVIDENCE OF NP:

DETECTION of dark matter particles with masses below few GeV + INDIRECT EVIDENCE OF NP in v_{τ} scattering: violation of lepton universality (lepto-quarks)

DIRECT EVIDENCE OF NP:

DETECTION of dark matter particles with masses below few GeV + INDIRECT EVIDENCE OF NP in v scattering: violation of lepton universality (lepto-quarks)

new or more precise structure functions in v scattering

Our benchmark physics

13

The vMSM and its fellows

3 Majorana (HNL) partners of Three Generations ordinary v, wit Three Generations of Matter (Fermions) spin 1/2 of Matter (Fermions) spin 1/2 Ш Ш Ш Ш 1.27 GeV 173.2 GeV 1.27 GeV mass 173.2 GeV mass-2.4 MeV 2.4 MeV g 2/3 0 charge -2/3 2/3 charge 2/3 g U С С In a peculiar p name. up charm top gluon up charm top name gluon 4.2 GeV 104 MeV 4.2 GeV 104 MeV 4.8 MeV 4.8 MeV N₃ almost deg uarks Quarks h ^{-1/3} **C** b -¹/₃ ·1/3 .1/3 S -¹/3 S V V C strange bottom photon strange bottom photor down dowr with m=O(GeV 91.2 GeV በ 126 GeV 91.2 GeV **(** 126 GeV spin spin ${}^{\circ}V$ Н with m=O(keV) orces) (Forces) weak force weak force Higgs boson Higgs boson electrør 0.511 MeV 1.777 GeV 80.4 GeV spin 0 0.511 MeV 105.7 MeV 1.777 GeV 80.4 GeV spin 0 105.7 MeV Leptons Leptons Bosons Bosons ±1 ¹ e e μ muon μ muor τ neutrino mass. electron weak tau electron tau weak force

baryogenesis (via lepto-genesis) and NShaposhnikov PL B620 (2005) 17 **DM (N1)!**

14

No hierarchy problem

inverted mass hyerarchy

Interaction with the Higgs v.e.v. - >mixing with active neutrinos with U²

in the vMSM strong limitations in the parameter space (U²,m)

a lot of HNL searches in the past but, for $m > m_K$, with a sensitivity not of vMSM interest

ex. meson decays ->

N_{2,3} decays

very long life-time

decay paths of O(km)!: for $U^{2}\mu=10^{-7}$, $\tau_{N}=1.8 \times 10^{-5}$ s

Various decay modes : the BR's depend on flavor mixing

The probability that $N_{2,3}$ decays within the fiducial volume of the experiment $\propto U_{\mu}^2$

-> number of events $\propto U_{\mu}^4$ if N detected

Decay mode	Branching ratio		
$N_{2,3} \rightarrow \mu/e + \pi$	0.1 - 50 %		
$N_{2,3} \rightarrow \mu^{-}/e^{-} + \rho^{+}$	0.5 - 20 %		
$N_{2,3} \rightarrow v + \mu + e$	1 - 10 %		

SHIP sensitivity to HNL

SHIP will scan most of the cosmologically allowed (in the context of vMSM) region below the charm mass

NORWAYUKRAINE SCHOOL-CERN 7-NOV 2017

Also FCC-ee and LHC could say something

18

Not only vMSM for the sterile v's (1): interpretation in the context of Left-Right symmetric model

19

Not only vMSM for the sterile v's (2): enhanced sterile v production via new dark gauge force, e.g B-L gauge symmetry

Dark Higgs

Pseudo-scalar portal: ALP or PNGB

coupling to fermions only: produced in B decays decay to fermions

coupling to photons only: decay to photons

10-2 SLAC 14 10-3 arXiv:1512.03069 CHARM 10-4 10⁻⁵ **SLAC 137** 10-6 8 10-7 SN1987a 10⁻⁸ 10^{-2} 10-1 10⁰ m_a [GeV]

> we are currently studying backgrounds and possible detector improvements for reconstruction of the photon direction

Low mass SUSY (I)

Phys. Rev. D 92, no. 7, 075015 (2015)

Search for SUSY renegades, below the EW scale

Neutralino's in RPV SUSY models

In the constrained MSSM with 5 parameters the lightest neutralino must be heavier than 46GeV but in general even massless neutralino is allowed

production: from decays of D and B mesons

decay: eev, $\mu\mu\nu$, π e, $\pi\mu$, Ke, K μ like the HNL

Low mass SUSY (I)

For coupling of order 1 the mass reach for s-fermion masses (assumed the same in this paper) is O(30TeV)

TABLE I. Estimates of SHiP sensitivity to and CHARM bounds on combinations of RPV couplings. In the first three rows we set $M_{\tilde{\chi}_1^0} = 1 \text{ GeV}$ and $M_{\tilde{\chi}_1^0} = 4 \text{ GeV}$ for the last three rows. Indices j, k = 1, 2 and i = 1, 2, 3 indicate flavor of the final-state leptons.

	Expected sensitivity	Upper limit
λ	SHiP, $M_{\tilde{f}}^2/{ m TeV^2}$	CHARM, $M_{\tilde{f}}^2/\text{TeV}^2$
$\sqrt{\lambda_{121}'\lambda_{ijk}}$	$2.4 imes10^{-3}$	$2.5 imes10^{-2}$
$\sqrt{\lambda_{121}'\lambda_{j11}'}$	$1.2 imes 10^{-3}$	_
$\sqrt{\lambda_{121}'\lambda_{j21}'}$	$1.4 imes 10^{-3}$	_
$\sqrt{\lambda_{113}'\lambda_{ijk}}$	$2.4 imes10^{-3}$	$2.5 imes10^{-2}$
$\sqrt{\lambda_{113}'\lambda_{j11}'}$	$3.9 imes10^{-3}$	_
$\sqrt{\lambda_{113}'\lambda_{j21}'}$	$4.0 imes 10^{-3}$	—

Low mass SUSY (II)

arXiv:1511.05403

If SUSY is spontaneously broken at not very high energy scale (see models with gauge mediation of SUSY breaking as an example), the particles from SUSY breaking sector may show up at quite low energies.

The Goldstino supermultiplet contains the Goldstino (the Nambu– Goldstone field, fermion) and its superpartners, scalar and pseudoscalar s-goldstinos.

S-goldstino couplings to the SM fields are ${\rm \propto}1/F^2$ (scale of SUSY breaking) in the whole model

-> their couplings are anticipated to be rather weak.

->test the SUSY breaking scale by hunting for the light s-goldstinos

26

Low mass SUSY (II)

27

SHiP can probe the supersymmetry breaking scale

up to 10³ TeV for the model without flavor violation and up 10⁵ TeV for the model with flavor violating parameters

Backgrounds for the downstream detector:

from TUNED-ON-DATA MonteCarlo we found <0.1 in more than 2e20 pot (*)

28

(*) except for ALP—>yy under study

but still investigating

1) from active v interactions

2) from cosmics

- 3) from μ interactions
- 4) combinatorial µ background

The target complex

Target and muon filter

Longitudinally segmented hybrid target: Mo(58cm)/W(58cm) the beam is spread on the target to avoid melting

It is followed by a muon filter.

The issue is not trivial since the muon flux is enormous: 10¹¹/SPS-spill(5×10¹³ pot)

Critical component to optimise to maximise the experimental acceptance

 A measurement of the muon spectrum for the SHiP target at the H4 test-beam at CERN's SPS is planned for spring

32

Muon distribution at the tracking stations

Straw tracker

NORWAYUKRAINE SCHOOL-CERN 7-NOV 2017

5m straws!

WORK ONGOING, PRELIMINARY RESULTS Vladimir Solovev

UH

Elongation of Straws

Properties of straws

- $5\,\mathrm{m}$ long with $2\,\mathrm{cm}$ diameter
- \bullet Needed longitudinal tension (upscaled from NA62): $5\,\mathrm{kg}$
- \triangleright Sagging in center: $2\,mm$
- $\triangleright\,$ Elongation of a few cm

Deal with elongation of straw over time up to $8\,\mathrm{cm}$

- A first idea: Constant straw tension by hydraulics/pneumatics
- 2 cylindrical bellows, one inside the other, separating
 - drift-gas
 - hydraulic-medium
 - vacuum
- Made of rubber, stabilized by metal disc rings or entirely metal

39

Keep wire tension independent of straw tension

NORWAYUKRAINE SCHOOL-CERN 7- NOV 2017

Timing detector

Reminder: WOM-detection principle

LS: emission spectrum WLS: absorption & re-emission Relative light output LAB + 2g/I PPO Absorption [a. u.] Intensity [a. u.] T **Bis-MSB** UV-light Electron beam 0 0.8 .. M. Wurm, EPJC D57, 105 (2010) 0.4 **Diploma thesis** D. Hebbeker 0.2 **U** Bonn THE THE 250 550 300 350 400 450 500 600 300 400 500 Wavelength in nm Wavelength in nm Mini-WOM (Wavelength-shifting **Optical Module**) UV scintillation photon PMT

First LS-filled box with large-area WOM

Motivations for a good particle identification in SHiP

1) measure the mass of final states from hidden sector particle decays, with and without neutrals

2) distinguishing between models: HNLs, dark scalar, dark vector, SUSY etc.

3) distinguishing final states so to extract the parameters of the vMSM —> together with the measurement of the Dirac phase δ by DUNE/HyperK, information on lepto-genesis (e.g. JHEP 1708 (2017) 018)

As a by-product we will get further suppression of v induced background

The TP design (1)

requirements considered for ECAL design:

e- and γ reconstruction, energy and position measurement, e-/ π separation

- large size
- known technologies
- e-/ π separation as good as possible from 1 to 100Gev
- moderate $\sigma(E)$, granularity to see the two photons from the π^0 from HNL— $>\rho I$

distance of photons in ECAL from π^0 's in HNL—> ρ I

47

need to see separate two photons to distinguish $\pi^0\pi^0$ from ALP—> $\gamma\gamma$

The TP design (2)

requirements considered on HCAL/MUON detector design: μ/π separation (including also ECAL!)

- large size
- known technologies
- tag neutral particles such a K⁰^L for background rejection (but at the time no practical example)
- μ/π separation for non decaying pions as good as possible from 1 to 100GeV

HNL decay product spectrum

(DP harder)

ECAL : e/γ id, π^0 and η reconstruction (Shashlik technique, LHCb)

HCAL : π/μ separation (similar technology as ECAL)

The EM calorimeter in the Technical Proposal

Physics: HNL—> $\pi\pi^{0}$ I, DP—> $\pi\pi\pi^{0}$, e-/ π separation in HNL—> π e

Particle rate —> low

Shashlik (a la LHCb) Cells of $6 \times 6 \text{ cm}^2$ cross section with 140 alternating layers of 1 mm lead and 2 mm scintillator. Total depth of ~50 cm = 25 X₀ σ (E)/E≈5.7%/ \sqrt{E}

The HCAL and MUON detector in the Technical Proposal

The TP design (2)

Design:

cover $\mu l \pi$ separation above few GeV's <threshold> with "MUON" detector (4 layers of plastic extruded scintillator read out by WLS fibres and SiPMS's and digital readout alternated with 3.4 λ_1 iron absorbers) – > a "topological" detector

The TP design (2)

and cover the low momentum region <4GeV with iron Shashlik HCAL with 24x24cm² cells with 6.2 λ_{I}

first thin section (H1) with 18 sampling layers followed by a second section (H2) of 48 layers (Shashlik was chosen just for conceptual simulation)

Of course the MUON detector threshold depends on what is in front in terms of λ_{I}

Performance studies already in the TP

ECAL response studied with FairSHiP MC

HCAL detector optimised stand-alone (not in FairSHiP)

MUON detector NOT optimised but simulated in FairSHiP with HCAL in front (6.2 λ_1)

Beware: hadronic shower response in MC not completely reliable

Performance on non-decaying pions of the MUON detector

Table 4.8: Pion suppression factors and pion misidentification probabilities at 95% muon identification efficiency, achieved by ECAL \oplus H1 \oplus H2 in the current geometry.

Track momentum (GeV/c)	1	1.5	2	2.7	3	5	10
π suppression factor	23	32	50	120	160	210	250
π misidentification probability (%)	4.3	3.1	0.20	0.83	0.63	0.48	0.40

HCAL and ECAL combined

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-SHiP-NOTE-2016-CDS number July 23, 2017

Particle Identification tools and performance in the SHiP Experiment

Behzad Hosseini¹ and Walter Bonivento¹

INPN Cagliari

Abstract

This note describes in detail the implementation and performance of the PID algorithm in the PsirSHiP simulation.

Post-TP performance studies with FairSHiP

PID software implemented in FairSHiP

- A new 30000 events are generated with the last updated FairShip using pythia8.
 - μμ, ee, ππ, μπ, πe, μμυ, eeu, μeu
- Following cuts aplied:
 - 1 HNL candidate
 - Vertex and tracks are in the fiducial volume
 - N.d.f > 25
 - DOCA < 1 cm</p>
 - $X^2 / n.d.f < 5$
 - P_{Daughters} > 1 GeV
 - IP cut: 2boddy (<10), 3boddy (>10 & <250)
 - No particle out of the acceptance of the PID detectors

57

24/11/2016

9th SHiP Collaboration Meeting - Behzad

58

ECAL/HCAL cuts (position extrapolated at shower max)

 $\Delta x, \Delta y$ and E/p (for e- should be around 1)

MUON detector cuts: $\Delta x, \Delta y$, #hits, penetration

All cuts momentum dependent

for p<5 Gev check HCAL penetration and consistency with mip

PID with signal channels: HNL, Dark Photon

REC → GEN 🗸	μ-μ	e-e	π-π	μ-π	π-е	μ-е	REC → GEN 🔓	μ-μ	e-e	π-π	μ-π	π-е	μ-е
<mark>µ-µ</mark> 2 body	324/328 98.78%			4/328 1.22%			<mark>μ-μ</mark> 2 body	287/291 98.63%			4/291 1.37%		
e-e 2 body		280/281 99.64%			1/281 0.36%		e-e 2 body		266/267 99.63%			1/267 0.37%	
<mark>π-π</mark> 2 body			278/294 94.56%	4/294 1.36%	12/294 4.08%		π-π 2 body		3/297 1%	268/297 90.24%	5/297 1.68%	20/297 6.73%	1/297 0.34%
<mark>μ-π</mark> 2 body	4/273 1.47%		1/273 0.36%	266/273 97.44%		2/273 0.73%	<mark>μ-π</mark> 2 body	23/296 7.77%		2/296 0.68%	259/296 87.5%	1/296 0.34%	11/296 3.72%
π-e 2 body		1/296 0.33%	2/296 0.67%		287/296 97%	6/296 2%	π-e 2 body		12/236 5.08%			221/236 93.64%	3/236 1.27%

REC → GEN ↓	μ-μ	e-e	μ-е	μ-π	π-е	REC → GEN ↓	μ-μ	e-e	μ-е	μ-π	π-е
μ-μ 3 body	283/287 98.61%			4/287 1.39%		μ-μ 3 body	312/317 98.42%			5/317 1.58%	
e-e 3 body		269/275 98.91%			3/275 1.09%	e-e 3 body		230/231 99.57%			1/231 0.43%
μ-e 3 body		3/279 1.08%	275/279 98.56%		1/279 0.36%	μ-e 3 body		12/240 5%	223/240 92.92%		5/240 2.08%

1GeV

400MeV

REC → GEN ↓	μ-μ	e-e	π-π	μ-π	π-е	µ-е	REC → GEN ↓	μ-μ	e-e	π-π	μ-π	π-е	μ-е
<mark>µ-µ</mark> 2 body	324/328 98.78%			4/328 1.22%			<mark>µ-µ</mark> 2 body	287/291 98.63%			4/291 1.37%		
e-e 2 body		280/281 99.64%		\frown	1/281 0.36%		e-e 2 body		266/267 99.63%		\frown	1/267 0.37%	
π-π 2 body			278/294 94.56%	4/294 1.36%	12/294 4.08%		π-π 2 body		3/297 1%	268/297 90.24%	5/297 1.68%	20/297 6.73%	1/297 0.34%
<mark>μ-π</mark> 2 body	4/273 1.47%		1/273 0.36%	266/273 97.44%		2/273 0.73%	<mark>μ-π</mark> 2 body	23/296 7.77%)	2/296 0.68%	259/296 87.5%	1/296 0.34%	11/296 3.72%
<mark>π-e</mark> 2 body		1/296 0.33%	2/296 0.67%		287/296 97%	6/296 2%	<mark>π-e</mark> 2 body		12/236 5.08%			221/236 93.64%	3/236 1.27%

REC → GEN ↓	μ-μ	e-e	μ-е	μ-π	π-е	REC → GEN ↓	μ-μ	e-e	μ-е	μ-π	π-е
μ-μ 3 body	283/287 98.61%			4/287 1.39%		μ-μ 3 body	312/317 98.42%			5/317 1.58%	
e-e 3 body		269/275 98.91%			3/275 1.09%	e-e 3 body		230/231 99.57%			1/231 0.43%
μ-e 3 body		3/279 1.08%	275/279 98.56%		1/279 0.36%	μ-e 3 body		12/240 5%	223/240 92.92%		5/240 2.08%

pion decays in flight

GEN↓	μ-μ	e-e	π-π	μ-π	π-е	µ-е	REC -> GEN 🌡	μ-μ	e-e	π-π	μ-π	π-е	µ-е
<mark>μ-μ</mark> 2 body	324/328 98.78%			4/328 1.22%			<mark>µ-µ</mark> 2 body	287/291 98.63%			4/291 1.37%		
e-e 2 body		280/281 99.64%]		1/281 0.36%		e-e 2 body		266/267 99.63%]		1/267 0.37%	
π-π 2 body			278/294 94.56%	4/294 1.36%	12/294 4.08%		π-π 2 body		3/297 1%	268/297 90.24%	5/297 1.68%	20/297 6.73%	1/297 0.34%
<mark>μ-π</mark> 2 body	4/273 1.47%	\frown	1/273 0.36%	266/273 97.44%		2/273 0.73%	<mark>μ-π</mark> 2 body	23/296 7.77%	\frown	2/296 0.68%	259/296 87.5%	1/256 0.34%	11/296 3.72%
π-e 2 body		1/296 0.33%	2/296 0.67%		287/296 97%	6/296 2%	π-e 2 body		12/236 5.08%)		221/236 93.64%	3/236 1.27%
REC GEN 🚽	→ μ	-μ	e-e	µ-е	μ-π	π-е	REC GEN	→	μ-μ	e-e	μ-е	μ-π	π-е
μ-μ 3 body	283, 98.	/287 6 1%			4/287 1.39%		μ-μ 3 body	31 (91	2/317 3.42%			5/317 1.58%	
e-e 3 body		26 98	9/275 8.91%			3/275 1.09%	e-e 3 body	/	2: 9	30/231 9.57%			1/231 0.43%
μ-e 3 body		3	/279 . 08%	275/279 98.56%		1/279 0.36%	μ-e 3 body	/	1	2/240 5%	223/240 92.92%		5/240 2.08%

charge exchange reaction (can occur at any depth) et al. (in MC they are seen as true e-)

62

the other mis-id's depend are due to overlapping tracks in CALO's

M M

v-induced background

les

Doca<1 & 10 < IP < 250

VETO ON =SBT+upstream veto+muon detector of neutrino detector

[•]otal events from Iaroslava: 249 Ne remain with 128 events.

Accepted Invariant mass: InvMass<10GeV

To scale to 2e²⁰ pot divide by 8.3 for Air and 66.4 for He Most of the $\mu\pi$ events have rejected due to the IP>10

10 < IP < 250 cm (as for N→μμυ)

	μ-μ	e-e	µ-е	μ-π	π-π
	IP>10	IP>10	IP>10	IP>10	IP>10
Rec	3	1	11	105	8

$$N_{air} = 1.8$$

 $N_{helium} = 0.22$

if vacuum =10⁻³ bar, background=0.016 events even without PID; NB: these are the neutrinos only

Why evolving compared to TP?

- 1) reduce possibly cost of Shashlik
- 2) add the measurement of shower direction for neutral final states (need few mrad resolution for ALP—>γγ) and possibly suppress background
 3) improve e/π separation
- of course it is a 5x10 m² guy (or lady)...

Search for

ALP->vv JHEP 1602 (2016) 018

invariant mass reconstruction

Why to care about mass reconstruction? imagine we find 10 two-photon only events. Wouldn't you like to see an accumulation of a mass peak to claim we have a discovery (and not some background)?

the mass region which is only for us (not for NA62)

The measurement of the shower direction

This is not a completely new subject:

- e.g. ATLAS, though in one direction only (η)

- γ-ray experiments (e.g. FERMI) in space can measure it with high precision but very low efficiency (here we need full efficiency)

In SHiP we can take advantage of the fixed target configuration that leaves some room in the longitudinal direction —> increase the lever arm

I show here some new ideas supported by GEANT simulation but work is not finished!

Implemented in GEANT-based simulation with some simplifying assumptions

in blue a sampling ECAL with X-Y plastic scintillator bars readout via WLS fibres from the sides, coarse granularity

in red the high precision layers at $3X_0$, $5X_0$ and $6.5 X_0$ (µ-pattern gas detectors with pad readout with digital readout) that could also be staged

Physics with the upstream detector

Structure functions in the Standard Model

v_{τ} DIS

$$\begin{split} W_{\mu\nu} &= \sum_{\rm spin}^{-} \sum_{N} \sum_{F} \langle N | J_{\mu}^{\oplus} | F \rangle \langle F | J_{\nu} | N \rangle \, \delta(q + p - p_{F}) \\ &= -\delta_{\mu\nu} W_{1} - \frac{1}{M^{2}} p_{\mu} p_{\nu} W_{2} - \frac{1}{2M^{2}} \epsilon_{\mu\nu\alpha\beta} p_{\alpha} q_{\beta} W_{3} - \frac{1}{M^{2}} q_{\mu} q_{\nu} W_{4} \\ &- \frac{1}{2M^{2}} (p_{\mu} q_{\nu} + p_{\nu} q_{\mu}) W_{5} , \end{split}$$

decomposition of the hadronic tensor with them reversal invariant structure functions $W_i(q^2,v)$ (p is 4momentum of nucleon)

Assuming Bjorken scaling

 $\lim_{\text{Bj}} MW_1 = F_1(x), \qquad \lim_{\text{Bj}} \nu W_k = MF_k(x),$

$$\frac{\mathrm{d}^2 \sigma^{\nu, \overline{\nu}}}{\mathrm{d}x \, \mathrm{d}y} = \frac{G^2 M E}{\pi} \left\{ \left(xy + \frac{m^2}{2ME} \right) y F_1 + \left[(1-y) - \left(\frac{M}{2E} xy + \frac{m^2}{4E^2} \right) \right] F_2 \right\}$$
$$\mp \left[xy(1 - \frac{1}{2}y) - \frac{m^2}{4ME} y \right] F_3 + \frac{m^2}{M^2} \left[\left(\frac{M}{2E} xy + \frac{m^2}{4E^2} \right) F_4 - \frac{M}{2E} F_5 \right] \right\}$$

Assuming $2xF_1 = F_2$ (Callan-Gross), and $-xF_3=F_2$, verified experimentally, it follows that $F_4 = 0$ and $2xF_5=F_2$ (Albrecht-Jarlskog). LO QCD (parton model) confirms these relations.

75

 F_4 and F_5 cannot be measured in $\nu_{\mu}~$ and ν_e scattering since they are suppressed by mass terms

With SHiP we can test for the first time the full neutrino DIS formula providing one of last remaining fundamental tests of the SM.

NB: $\sigma(v_{\tau}) < \sigma(v_{\mu})$ in the SM, and half the difference comes from reduced phase space and half from F₅

...and not to forget that the anti- v_{τ} was not observed so far...

s-quark structure function

LHC and SHiP will probe the strangeness distribution in different ranges of x. With $Q^2 \sim M_w^2$ measurements of W and W+c production at the LHC constraint on strangeness at x < 10⁻² SHiP is sensitive above this range

Searches for NP

 v_{τ} DIS

Lepton universality tests

Phys.Rev. D92 (2015) 7, 073016

No wonder that the third generation is the most interesting in this respect, less tested, higher mass ecc.(e.g. 2HDM)

Also some hints of LUV from LHCb, B Factories ecc.

In the presence of NP, the effective Hamiltonian for the scattering process $v_{\tau} + N \rightarrow \tau + X$

$$\begin{aligned} \mathcal{H}_{eff} &= \frac{4G_F V_{ud}}{\sqrt{2}} \Big[(1+V_L) \left[\bar{u} \gamma_{\mu} P_L d \right] \left[\bar{l} \gamma^{\mu} P_L \nu_l \right] + V_R \left[\bar{u} \gamma^{\mu} P_R d \right] \left[\bar{l} \gamma_{\mu} P_L \nu_l \right] \\ &+ S_L \left[\bar{u} P_L d \right] \left[\bar{l} P_L \nu_l \right] + S_R \left[\bar{u} P_R d \right] \left[\bar{l} P_L \nu_l \right] + T_L \left[\bar{u} \sigma^{\mu\nu} P_L d \right] \left[\bar{l} \sigma_{\mu\nu} P_L \nu_l \right] \Big] \\ &\text{In which } \mathsf{G}_{\mathsf{F}} \text{ is the Fermi coupling constant} \\ & \mathsf{Vqq} \ \text{is Cabibbo-Kobayashi-Maskawa (CKM) matrix element} \\ & \mathsf{P}_{\mathsf{L},\mathsf{R}} = (1 \mp \gamma_5)/2 \ , \ \sigma_{\mu\nu} = \mathsf{i} [\gamma_{\mu\nu} \gamma_{\nu}]/2 \end{aligned}$$

DIS cross section written including possible BSM couplings between light quarks and third generation leptons and compared to SM

We studied so the effect on total cross sections; differential yet to be done

Effect of NP on cross section: scalar-tensor model

parameters allowed by τ hadronic branching ratio values

FIG. 10 (color online). $S \pm T$ model: The total cross section of $\nu_{\tau} + N \rightarrow \tau + X$ in the scalar-tensor model. The green solid line corresponds to the standard model prediction $S_R = S_L = T_L = 0$. The blue dashed, black dotted and red dot dashed lines correspond to $(S_R, S_L, T_L) = (-0.19, 0.68, 0.072)$. (1.98, 0.42, -0.13), (-1.87, -1.31, 0.18).

 $A_S = S_R + S_L B_S = S_R - S_L$

$$\begin{aligned} \frac{d\sigma_{LQS}}{dxdy} &= \frac{G_F^2 M E_{\nu}}{4\pi} (A_S^2 + B_S^2) y \left(xy + \frac{m_{\ell}^2}{2M E_{\nu}} \right) F_1, \\ \frac{d\sigma_{LQT}}{dxdy} &= \frac{8G_F^2 M E_{\nu}}{\pi} T_L^2 \left(y \left(xy + \frac{m_{\ell}^2}{2M E_{\nu}} \right) F_1 \right) \\ &+ 2 \left(1 - y - \frac{Mxy}{4E_{\nu}} - \frac{m_{\ell}^2}{8E_{\nu}^2} \right) F_2 - \frac{m_{\ell}^2}{M E_{\nu}} F_5 \end{aligned}$$

Preliminary results

Dark photon decaying to dark matter

 χ scattering

US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report arXiv:1707.04591v1 [hep-ph] Detect neutral current interaction on atomic e-

—>not a background-free search (but calculable)

Light v's detector

Neutrino target

- 6 columns (along x direction)
- 12 rows (along y direction)
- 11 walls (along z direction)
- 12 layers of Target Trackers (upstream layer acting as veto)

Total dimensions: 0.8x1.6x2 m³

Incoming v flux

Muon spectrometer

Neutrino target

Hybrid detector principle

Neutrino target

also tested together with GEMs and μ Wells and with MicroMegas

Test beam funded by AIDA 2020

WITH MAGNET

- Dimensions: 0.8 x 2 x 1.6 m³
- Number of ECC bricks: 924
- Total mass: ~7 tons
- Horizontal magnetic field

WITHOUT MAGNET

- Dimensions: 1.12 x 2.68 x 2.04 m³
- Number of ECC bricks: 3600
- Total mass: ~28 tons (x4)
- No magnetic field

WITH MAGNET

Pros

- 1. Hadronic (BR 65%) and muonic (BR 17%) tau decay channel used for $v_{\tau}/anti-v_{\tau}$ separation
- 2. Momentum measurement for hadrons performed with MCS algorithms in the brick and with sagitta method in CES.

Contra

- 1. Lower sensitivity in LDM searches.
- 2. Target volume limited by the magnetised region.
- 3. Multiple scattering of particles in magnet iron.

WITHOUT MAGNET

Pros

- 1. Increase in the LDM sensitivity
- 2. Increase neutrino statistics
- 3. CES not needed anymore: simplification of the target, further increase in target mass
- 4. Avoid multiple scattering in magnet iron

Contra

- 1. Without CES no possibility to measure hadron charge.
- 2. Only muonic channel (BR 17%) used to discriminate v_{τ} /anti- v_{τ} .
- 3. Momentum measurement for hadrons rely only on MCS in the brick.

Coming next!

Take home message!

We have shown here that an intensity/acceptance increase compared to past hadronic beam dump experiments gives access to a very rich physics program

Many models (and theories...SUSY...), that provide a deep connection with cosmology, can be tested in an unexplored range of parameters

SHiP will also allow to complete the experimental tests of the SM description of deep inelastic v scattering with the reconstruction of the v_{τ} interactions

91

The protons are there...

