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PARTON MODEL�������������������Elasti sattering : eletron � proton���> proton (hadron) is NOT point-likeDeep inelasti sattering : eletron � proton���> proton (hadron) onsists of point-like partiles-partons��������������������Cross setion (hadron) = Σ ross setion (parton) × weightsWeights � probabilities in the system of in�nite momentum(Bjorken, Feynman)



IN QCD weights depend on Q of hard proesses(SCALING VIOLATION, improved PM)
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Saling violation (dependene on Q) fromDGLAP ( Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ) equations:
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where g(µ2) is the running oupling onstant at the referene sale µ2,

nf is the number of ative �avours,
ΛQCD is the dimensional QCD parameter.



It is possible (BUT very rarely): hard double parton sattering(subproesses A and B)

The inlusive ross setion of a double parton sattering proess in ahadron ollision is written in the following form (with only the assumptionof fatorization of the two hard parton subproesses A and B)(Paver, Treleani,..., Blok,...., Diehl,...).
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2b,where b is the impat parameter � the distane between enters ofolliding (e.g., the beam and the target) hadrons in transverse plane.
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2) are the double parton distribution funtions, whihdepend on the longitudinal momentum frations x1 and x2, and on thetransverse position b1 and b2 of the two parton undergoing hard proesses

A and B at the sales Q1 and Q2.
σ̂Aik and σ̂Bjl are the parton-level subproess ross setions.The fatorm/2 appears due to the symmetry of the expression for interhan-ging parton speies i and j. m = 1 if A = B, and m = 2 otherwise.



The double parton distribution funtions Γij(x1, x2;b1,b2;Q
2
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2
2) are themain objet of interest as onerns multiple parton interations. In fat,these distributions ontain all the information when probing the hadronin two di�erent points simultaneously, through the hard proesses A and

B.It is typially assumed that the double parton distribution funtions maybe deomposed in terms of longitudinal and transverse omponents asfollows:
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If one makes the further assumption that the longitudinal omponents
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the ross setion of double parton sattering an be expressed in thesimple form
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d2b(T (b))2]−1is the e�etive interation transverse area (e�etive ross setion).
Reff is an estimate of the size of the hadron.



The momentum (instead of the mixed (momentum and oordinate))representation is more onvenient sometimes:
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.Here the transverse vetor q is equal to the di�erene of the momenta ofpartons from the wave funtion of the olliding hadrons in the amplitudeand the amplitude onjugated. Suh dependene arises beause the di�e -rene of parton transverse momenta within the parton pair is not onserved.



The main problems are* to make the orret alulation of the two-parton funtions
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The solutions of the generalized DGLAP evolution equations with thegiven initial onditions at the referene sales µ2(t = 0) may be written inthe form:
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The �rst term is the solution of homogeneous evolution equation(independent evolution of two branhes), where the input two-partondistribution is generally NOT known at the low sale µ(t = 0). For thisnon-perturbative two-parton funtion at low z1, z2 one may assume thefatorization Dj1
′j2′
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h(x2, t)the fatorization hypothesis usually used in urrent estimations.This MAIN result shows that if the two-parton distributions are fatorizedat some sale µ2, then the evolution (seond term) violates this fatorizationinevitably at any di�erent sale (Q2 6= µ2), apart from the violation due tothe kinemati orrelations indued by the momentum onservation.



For a pratial employment it is interesting to know the degree of thisviolation. We did (Korotkikh, Snigirev) it using the CTEQ �t for singledistributions as an input. The nonperturbative initial onditions Dj
h(x, 0)are spei�ed in a parametrized form at a �xed low-energy sale Q0 = µ =

1.3 GeV. The partiular funtion forms and the value of Q0 are not ruialfor the CTEQ global analysis at the �exible enough parametrization,whih reads
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The evolution e�ets are getting larger with inreasing hard sales. Thenumerial estimations by integrating diretly the evolution equations(Gaunt, Stirling; Diehl, Kasemets, Keane) on�rm also this onlusion.The partiular solutions of non-homogeneous equations ontribute to theinlusive ross setion of DPS with a larger weight (di�erent e�etiveross setion (Cattaruzza,Del Fabbro,Treleani; Ryskin, Snigirev;Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling))as ompared to the solutions of homogeneous equations(the �traditional� fatorization omponent).The latter solutions are usually approximated by a fatorized form if theinitial nonperturbative orrelations are absent. These initial orrelationonditions are a priori unknown yet not quite arbitrary as they obey thenontrivial sum rules whih are imposed upon the evolution equations. Theproblem of speifying the initial orrelation onditions for the evolutionequations, whih would obey exatly these sum rules and have the orretasymptoti behavior near the kinematial boundaries, has been extensivelystudied (Gaunt, Stirling; Snigirev; Ceopieri; Chang, Manohar, Waalewijn;Rinaldi, Sopetta,Vento; Gole-Biernat, Lewandowska).



The experimental e�etive ross setion, σexp
eff , whih is not measureddiretly but is extrated by means of the normalization to the produt oftwo single ross setions:

σγ+3j
DPS

σγjσjj
= [σexp

eff ]−1,

appears to be dependent on the probing hard sale. It should DECREASEwith inreasing the resolution sale beause all additional ontributionsto the ross setion of double parton sattering are positive and inrease.In the above formula, σγj and σjj are the inlusive γ+ jet and dijets rosssetions, σγ+3j
DPS is the inlusive ross setion of the γ+3 jets events produedin the double parton proess.It is worth notiing that the CDF and D0 Collaborations extrat σexp

effwithout any theoretial preditions on the γ+ jet and dijets ross setions,by omparing the number of observed double parton γ + 3 jets events inONE pp̄ ollision to the number of γ+ jet and dijets events ourring inTWO separate pp̄ ollisions.



The reent D0 measurements represent this e�etive ross setion, σexp
eff ,as a funtion of the seond (ordered in the transverse momentum, pT) jet

pT , pjet2
T , whih an serve as a resolution sale. The obtained ross setionsreveal a tendeny to be dependent on this sale.
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This observation an be interpreted as the �rst indiation to the QCDevolution of double parton distributions(Snigirev; Flensburg, Gustafson, Lonnblad, Ster ).



Promising andidate proesses to probe DPS at the LHC:

• same-sign W prodution (�pure�, BUT very rare)

• γ + 3 jets (Tevatron also: D0, CDF)

• W (Z) + 2 jets (ATLAS � �rst measurement σeff at LHC)

• 4 jets (Tevatron also: CDF)
• bb̄ pair +2 jets

• bb̄ pair + W boson

• pairs of heavy mesons (in partiular, double J/ψ prodution)(LHCb � �rst measurement of double J/ψ prodution )



J/ψ pairs produtionAzimuthal angle di�erene distribution after imposing uts on the J/ψtransverse momenta for SPS

It is rather di�ult to disentangle the SPS and DPS (�at) modes: thedi�erene beomes visible only at su�iently high uts, where the produtionrates are, indeed, very small.



Distribution over the rapidity di�erene between J/ψ mesons. (Dottedurve: leading-order SPS, dash-dotted urve: DPS)

Seleting large rapidity di�erene events looks more promising to disentanglethe SPS and DPS modes



Double di�erential distribution for the leading-order SPS prodution mode



DPS in pA(Strikman, Treleani; Blok, Strikman, Wiedemann; d'Enterria, Snigirev,.....) :1. The two partons of the nuleus belong to the same nuleon

Nulear enhanement fator A as for SPS



2. The two partons of the nuleus belong to the di�erent nuleons

Nulear enhanement fator: ∝ A2/A2/3 = A1+1/3(A2/3 due to the di�erene of the transverse sizes between p and A)



The �nal DPS ross setion �poket formula� in pA ollisions:
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The relative ontribution of the two terms are approximately 1 : 2



DPS in AA :1. The two olliding partons belong to the same pair of nuleons

Nulear enhanement fator A2 as for SPS



2. Partons from one nuleon in one nuleus ollide with partons from twodi�erent nuleons in the other nuleus

Nulear enhanement fator: ∝ A3/A2/3 = A2+1/3



3. The two olliding partons belong to two di�erent nuleons from bothnulei (in fat, double nuleon sattering)

Nulear enhanement fator: ∝ A4/A2/3 = A2+4/3



The �nal DPS ross setion �poket formula� in AA ollisions:
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The relative ontribution of the three terms are approximately 1 : 4 : 200



Centrality-dependene of the DPSThe ross setion for SPS and DPS an interval of impat parameters

[b1, b2], orresponding a given entrality perentile, f% = 0 − 100%, of thetotal A-A ross setion σAA, with average overlap funtion < TAA[b1, b2] >are
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the three dimensionless and appropriately-normalized frations read
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For not very peripheral ollisions (f% < 0 − 65%) DPS ross setion (ina thin impat-parameter range) an be approximated by third dominantterm
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In the entrality perentile f% ≃ 65 − 100% the seond term would addabout 20% more DPS ross setion.For very peripherial ollisions (f% ≃ 85 − 100%, where < TAA[b1, b2] > isorder or less than 1/σeff,pp) the ontributions from the �rst term are alsonon-negligible (dominant in the limit 1/b→ 0).



The formalism of DPS was applied to study:

same-sign W-boson pair prodution in pPb ollisions at LHC energies

J/ψ-pair prodution in Pb-Pb ollisions at LHC energies

Spei�ation in alulations, results and plots� in original papers (+ nie presentations (d'Enterria) onHard Probes 2013, Quark Matter 2014)





Only main onlusionsp-Pb ollisions:* At the nominal √sNN = 8.8 TeV energy, the DPS ross setion forlike-sign WW prodution is about 150 pb, i.e. 600 times larger than thatin proton-proton ollisions at the same .m. energy and 1.5 times higherthan the same-sign WW+2-jets bakground.* The measurement of suh a proess, where 10 events with fully leptoniW's deays are expeted after uts in 2 pb−1, would onstitute anunambiguous DPS signal at the LHC, and would help determine thee�etive σeff parameter haraterizing the area of double parton interationsin hadroni ollisions.





Pb-Pb ollisions:* DPS onstitute an important fration of the total prompt-J/ψ rosssetions, amounting to 20 % (35%) of the primordial prodution in minimum-bias (most entral) Pb-Pb ollisions.* At 5.5 TeV, about 240 double-J/ψ events are expeted per unitrapidity in the dilepton deay hannels (in the absene of �nal-statesuppression) for an integrated luminosity of 1 nb−1, providing interestinginsights on the event-by-event dynamis of J/ψ prodution in Pb-Pbollisions.



DPS prodution ross setions ofdouble-J/ψ, J/ψ + Υ, J/ψ+W, J/ψ+Z,double-Υ, Υ+W, Υ+Z, and same-sign WWin Pb-Pb and p-Pb at the LHC:System J/ψ + J/ψ J/ψ + Υ J/ψ+W J/ψ+Z Υ + Υ Υ+W Υ+Z ssWWPb-Pb σDPS 210 mb 28 mb 500 µb 330 µb 960 µb 34 µb 23 µb 630 nb5.5 TeV NDPS (1 nb−1) ∼250 ∼340 ∼65 ∼14 ∼95 ∼35 ∼8 ∼15p-Pb σDPS 45 µb 5.2 µb 120 nb 70 nb 150 nb 7 nb 4 nb 150 pb8.8 TeV NDPS (1 pb−1) ∼65 ∼60 ∼15 ∼3 ∼15 ∼8 ∼1.5 ∼4

(from arXiv:1408.5172 [hep-ph℄; Nul. Phys. A 931, 303 (2014))The orresponding DPS yields, after (di)lepton deaysand aeptane+e�ieny losses, are given for 1 nb−1 and 1 pb−1 respetively.Thus, the simultaneous prodution of quarkonia and/or eletroweak bosonsfrom DPS proesses have large visible ross setions and are open to studyin p-Pb and Pb-Pb at the LHC.



m-parton distributions:
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Shelest, Snigirev, Zinovjev, Preprint ITP-83-46E, Kiev, 1983



TPS in QCD:A.M. Snigirev, Phys. Rev. D 94, 034026 (2016)D. d'Enterria, A.M. Snigirev, arXiv:1612.05582 [hep-ph℄ (2016) (PRL118, 122001 (2017))D. d'Enterria, A.M. Snigirev, arXiv:1612.08112 [hep-ph℄ (2016)
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BACK UPEXPLICIT solutionFortunately, the expliit form of evolution equation solutions allows us toanswer the question: whih orrelations (perturbative or nonperturbative)are more signi�ant at su�iently large hard sale.Indeed, the evolution equations are expliitly solved by introduing theMellin transformations
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h (x1, x2, t),whih lead to a system of ordinary linear di�erential equations of the�rst order. In order to obtain the distributions in x representation, aninverse Mellin transformation should be performed. In the general asethis an be done only numerially. However, the asymptoti behavior anbe estimated in some interesting and partiularly simple limits using thesame tehnique as above.



The exat solutions for single distributions in the moment representationan be written symbolially in a matrix form:
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M j1j2
i (n1, n2, t)

=
∑

jj1′j2′

t
∫

0
dt′M j

i (n1 + n2, t′)Pj→j1′j2′(n1, n2)M
j1
j1′(n1, t − t′)M j2

j2′(n2, t − t′).



The kernels,
Pj′→j(n) =

1
∫

0
xnPj′→j(x)dx,

Pj′→j1j2(n1, n2) =
1
∫

0
xn1(1 − x)n2Pj′→j1j2(x)dx,are well-known and an be found in the expliit form.Now we onsider the initial ondition e�ets in the asymptoti behavior(t→ ∞). In order to better understand the harater of this dependene,at �rst we use a toy model with one type of partons (for instane, QCDtheory with gluons only). In this ase:

M 11
h (n1, n2, t) = M 11

h (n1, n2, 0) exp{[P (n1) + P (n2)]t}+

P (n1, n2)M
1
h(n1 + n2, 0)

P (n1 + n2) − P (n1) − P (n2)
{exp[P (n1 + n2)t] − exp[(P (n1) + P (n2))t]}.



Thus, for t large enough, we have two di�erent asymptoti regimes dependingon the relation between the kernels P (n1 + n2) and P (n1) + P (n2):(1) If P (n1 + n2) < P (n1) + P (n2), then

M 11
h (n1, n2, t)|t→∞ =

[

M 11
h (n1, n2, 0)+

P (n1, n2)M
1
h(n1 + n2, 0)

P (n1) + P (n2) − P (n1 + n2)

]

× exp{[P (n1) + P (n2)]t}.

(2) If P (n1 + n2) > P (n1) + P (n2), then
M 11

h (n1, n2, t)|t→∞ =
P (n1, n2)M

1
h(n1 + n2, 0)

P (n1 + n2) − P (n1) − P (n2)
× exp[P (n1 + n2)t].

For the seond regime, the asymptoti behavior does not dependent on theinitial orrelation onditions M 11
h (n1, n2, 0) at all, and is spei�ed by theorrelations perturbatively alulated.



The presene of several parton types does not essentially ompliate theanalysis of the asymptoti behavior. Indeed, in this ase one has to expresssingle parton distributions via the eigenfuntions of orresponding DGLAPequations, put them into solutions above and take the leading ontributionsinto onsideration only.As a result, the relation between maximum eigenvalues Λ(n1 + n2) and

Λ(n1)+Λ(n2) will determine the asymptoti behavior regime of the dPDFs:(1) If Λ(n1 + n2) < Λ(n1) + Λ(n2), then the dPDFs are dependent on theinitial orrelation onditions M j1j2
h (n1, n2, 0).(2) If Λ(n1 + n2) > Λ(n1) + Λ(n2), then the dPDFs are independent of theinitial orrelation onditions M j1j2
h (n1, n2, 0).



The eigenvalues and the eigenfuntions for the single distributions inQCD have been thoroughly studied. The results of these studies showthat in QCD both asymptoti regimes are realized. Therefore, one needsto know the initial orrelation onditions (whih, generally speaking, arearbitrary and should be extrated from the experiment) to determineeven the asymptoti behavior of the dPDFs. However, we ome to therelation

Λ(n1 + n2) > Λ(n1) + Λ(n2)for large moments n1 and n2 that determines the dPDFs in the region ofnot parametrially small x1 and x2, beause Λ(n) ∼ − ln(n), n≫ 1.We onlude that the dPDFs �forget� the initial orrelation onditions(unknown a priori) at not parametrially small longitudinal momentumfrations, and the orrelations perturbatively alulated survive only inthe limit of large enough hard sales.Suh a dominane is independent of the strength of the initial orrelationonditions.



EVOLUTION CORRECTIONS TO DPS CROSS SECTIONThe evolution equation for Γij onsists of two terms. The �rst termdesribes the independent (simultaneous) evolution of two branhes ofparton asade: one branh ontains the parton x1, and another branh� the parton x2.The seond term allows for the possibility of splitting one parton evolution(one branh k) into two di�erent branhes, i and j. It ontains theusual splitting funtion Pk→ij(z). The solutions of the generalized DGLAPevolution equations with the given initial onditions at the referenesales µ2 may be written in the form:
Dj1j2

h (x1, x2; µ
2, Q2

1, Q2
2)

= Dj1j2
h1 (x1, x2; µ

2, Q2
1, Q2

2) + Dj1j2
h2 (x1, x2; µ

2, Q2
1, Q2

2)with

Dj1j2
h1 (x1, x2; µ

2, Q2
1, Q2

2)

=
∑

j1′j2′

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj1
′j2′

h (z1, z2; µ
2)Dj1

j1′(
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z1
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1)D

j2
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x2

z2

, µ2, Q2
2)



and
Dj1j2

h2 (x1, x2; µ
2, Q2

1, Q2
2) =

∑

j′j1′j2′

min(Q2
1,Q2

2)
∫

µ2

dk2αs(k
2)

2πk2

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

×

Dj′
h (z1 + z2; µ

2, k2)
1

z1 + z2

Pj′→j1′j2′
( z1

z1 + z2

)

Dj1
j1′(

x1

z1

; k2, Q2
1)D

j2
j2′(

x2

z2

; k2, Q2
2)where αs(k2) is the QCD oupling,

Dj1
j1′(z; k

2, Q2) are the known single distribution funtions (the Green'sfuntions) at the parton level with the spei� δ-like initial onditionsat Q2 = k2.

D
j′1,j

′
2

h (z1, z2, µ
2) is the initial (input) two-parton distribution at the relativelylow sale µ.The one parton distribution (before splitting into the two branhes atsome sale k2) is given by Dj′

h (z1 + z2, µ
2, k2).



The �rst term is the solution of homogeneous evolution equation (independentevolution of two branhes), where the input two-parton distribution isgenerally NOT known at the low sale µ. For this non-perturbative two-parton funtion at low z1, z2 one may assume the fatorization Dj1
′j2′

h (z1, z2, µ
2) ≃

Dj1
′

h (z1, µ
2)Dj2

′
h (z2, µ

2) negleting the onstraints due to momentum onservation(z1 + z2 < 1).This leads to

Dij
h1(x1, x2; µ

2, Q2
1, Q2

2) ≃ Di
h(x1; µ

2, Q2
1)D

j
h(x2; µ

2, Q2
2)the fatorization hypothesis usually used in urrent estimations.However, one should note that the input two-parton distribution Dj′1,j

′
2

h (z1, z2, µ
2)may be more ompliated than that given by fatorization ansatz.



As a rule the multiple interations take plae at relatively low transversemomenta and low x1,2, where the fatorization hypothesis for the �rstterm is a good approximation.



In this ase the ross setion for double parton sattering an be estimated,using the two-gluon form fator of the nuleon F2g(q) for the dominantgluon-gluon sattering mode (or something similar for other parton satteringmodes)
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(A,B) =
m
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∫

F 4
2g(q)

d2q

(2π)2
.From the dipole �t F2g(q) = 1/(q2/m2

g+1)2 it follows that the harateristivalue of q is of the order of �e�etive gluon mass� mg. Thus the initialonditions for the single distributions an be �xed at some not largereferene sale µ ∼ mg, beause of the weak logarithmi dependene ofthese distributions on the sale value.In this approah

∫

F 4
2g(q)

d2q

(2π)2gives the estimation of [σeff]−1.



The seond term is the solution of omplete evolution equation with theevolution originating from one �nonperturbative� parton at the referenesale. Here the independent evolution of two branhes starts at the sale

k2 from a point-like parton j ′.



In this ase, the large qt domain is NOT suppressed by the form fator

F2g(q) and the orresponding ontribution to the ross setion reads
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or in substantially shorter yet less transparent form:
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(A,B)
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The equations (above and below) present our solution of the problem �we obtain the estimation of the inlusive ross setion for double partonsattering, taking into aount the QCD evolution and basing on the well-known ollinear distributions, extrated from deep inelasti sattering:

σD
(A,B) = σD,1×1

(A,B) + σD,1×2
(A,B) + σD,2×2

(A,B)

Afterwards similar results were obtained also by Blok, Dokshitzer, Frankfurt, Strikmanwith an emphasis on the di�erential ross setions, then by Gaunt, Stirling (asonerning 1 × 1, 1 × 2 omponents)
2 × 2 omponent (double splitting diagrams ) is the subjet of disussionand our disagreement with Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling;Manohar, Waalewijn, mainly in a terminology.



At a large �nal sale Q2 the ontribution of seond (2 × 2) omponentshould dominate being proportional to q2 ∼ Q2, while the ontributionsof the 1× 1 or 1× 2 omponents ∼ m2
g ∼ 1/σeff are limited by the nuleon(hadron) form fatorF2g.In terms of impat parameters b this means that in the seond (2 × 2)term two pairs of partons are very lose to eah other; |b1 − b2| ∼ 1/Q.We have to emphasize that the dominant ontribution to the phase spaeintegral omes from a large q2 ∼ Q2 and, stritly speaking, the abovereasoning makes no allowane for the ollinear (DGLAP) evolution of twoindependent branhes of the parton asade (i.e., in the ladders L1, L2, L1′and L2′) in the 2 × 2 term.Formally in the framework of ollinear approah this ontribution shouldbe onsidered as the result of interation of one pair of partons with the

2 → 4 hard subproess (Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling;Manohar, Waalewijn).On the boundary of phase spae our formula reprodues naturally this result (2 → 4)due to the spei� δ-like initial onditions at k2 = Q2 for Green's funtions.



Reall, however, that when estimating the phase spae integral we negletthe anomalous dimension, γ, of the parton distributions

Dk
j (x/z, k

2, Q2) ∝ (Q2/k2)γ. In ollinear approah the anomalous dimensions

γ ∝ αs << 1 are assumed to be small. On the other hand, in a low x regionthe value of anomalous dimension is enhaned by the ln(1/x) logarithmand may be rather large numerially.So the integral over q2 is slowly onvergent and the major ontribution tothe ross setion is expeted to ome atually from some harateristiintermediate region, m2
g << q2 << Q2

1 (Q1 < Q2).Thus we do not expet suh strong sensitivity to the upper limit of q-integration as in the ase of the pure phase spae integral.Therefore it makes sense to onsider the quantitative ontribution of the

2 × 2 term even within the ollinear approah as applied to the LHCkinematis, where the large (in omparison with mg) available values of

Q1 and Q2 provide wide enough integration region for the harateristiloop momenta q.



We demonstrate this fat by diret alulation in the double logarithmapproximation. Let us put down the all integrations with splitting funtionsseparately to make the analysis more transparent
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2).In the double logarithm approximation we an restrit ourselves to thegluon main ontribution only and rewrite the integral under onsiderationin the following form
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The Green's funtions (gluon distributions at the parton level) in thedouble logarithm approximation read

xDg
g(x, t) ≃ 4Nctv

−3/2 exp [v − at]/
√

2π,

where

v =
√

8Nct ln (1/x), a = 11
6
Nc + 1

3
nf/N 2

c

t(Q2) =
2

β
ln

[ln(Q2

Λ2)

ln(µ2

Λ2)

]

,and where

β = (11Nc − 2nf)/3

nf is the number of ative �avors, Λ is the dimensional QCD parameter,

Nc = 3 is the olor number and the one-loop running QCD oupling

αs(Q
2) =

4π

β ln(Q2/Λ2)was used



After that the integral may be rewritten as

x1x2D
gg
h2(x1, x2; τ, T1, T2)

∼
min(T1,T2)

∫

τ
dt

∫

dzPg→gg(z)
∫

dy exp [
√

8Ncd(t, y, z)],

where

d(t, y, z) =
√

ty +
√

(T1 − t)(Y1 − y) +
√

(T2 − t)(Y2 − y)with

t = t(k2), T1 = t(Q2
1), T2 = t(Q2

2), τ = t(q2)and

y = ln(1/u), Y1 = ln(1/x1) − ln(1/z), Y2 = ln(1/x2) − ln(1/(1 − z)).

We keep the leading exponential terms only, whih have the same strutureboth at the parton level and at the hadron one under the smooth enoughinitial onditions at the referene sale.



We are interested in the domain with large enough T1, T2, ln(1/x1) and

ln(1/x2), when the exponential fators are large in omparison with 1 andwhere the approximations above are justi�ed. In this ase the integrationover the rapidity y has the saddle point struture in the wide interval of z-integration not near the kinemati boundaries. The saddle-point equationreads √
t

√
y0

−
√

(T1 − t)
√

(Y1 − y0)
−

√

(T2 − t)
√

(Y2 − y0)
= 0.It may be solved expliitly in the simplest ase of the two hard salesset equal T1 = T2 = T and at Y1 ≃ Y2 ≃ Y = ln(1/x), i.e., in the z-region where ln(1/z) << ln(1/x) and ln(1/(1 − z)) << ln(1/x) (In spite ofthe large nonexponential fator like ln(1/x) (due to the singularity of the splittingfuntion Pg→gg(z)) the ontribution from the integration region near the kinematialboundaries z ∼ x and 1 − z ∼ x is not dominant, sine in this ase the obtainedexponential fator exp [

√
8Nc

√

Y (T − τ )] is not leading).Then the saddle-point is equal to

y0 = Y t/(4T − 3t).



Thus, the splitting integrals redue to
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The t-integration is not a saddle-point type and therefore one of edges,namely t→ τ , dominates. That is
x2Dgg

h2(x, x; τ, T, T ) ∼ exp [
√

8Nc

√

Y (4T − 3τ )].

What follows from our estimation of splitting integrals in the doublelogarithm approximation by the saddle-point method ?



For single splitting diagrams (1 × 2 ontribution)�������������the lower limit for the t-integration may be taken at the referene sale,i.e., τ = t(q2)|q=µ = 0 due to the strong suppression fator F 2
2g(q). Theharateristi value of q being of the order of �e�etive gluon mass� mg ∼ µin the further q-integration. Thus one obtains for this ontribution thefollowing estimation

x2Dgg
h2(x, x; 0, T, T ) ∼ exp [

√
8Nc(

√
Y T +

√
Y T )].It means that the splitting takes plae in the �harateristi point� withthe sale k2 lose to µ2 and with the longitudinal momentum fration

u ∼ 1 (the saddle-point y0 ∼ t ∼ τ ∼ 0 in this ase).After splitting one has the TWO independent ladders with the well-developed BFKL and DGLAP evolution. Every ladder ontributes to theross setion with the large exponential fator, exp [
√

8Nc

√
Y T ], whih isjust the same as for single distributions.Therefore in the double logarithm approximation single splitting diagramshave, in fat, the fatorization property if one takes the leading exponentialfators into onsideration only.



For double splitting (2 × 2) diagrams�����������-the leading exponential ontribution arises from the lower limits of t- andeither lower or upper limits of q-integrations depending on the availablerapidity interval Y .There is ompetition between the exponential fator aused by the evolution,whih prefers a small τ , and the phase spae fator in q2-integral.Due to the non-logarithmi harater of the integration over d2q for a notsu�iently large Y the ontribution from the upper limit of q may dominate.Indeed, let us onsider the prodution of two bb̄ pairs in a entral rapidity(η ∼ 0) region. That is we take T1 = T2 = T , Y1 = Y2 = Y and keep just theleading exponential fators in the double parton distributions

x2Dh2(x, x, q2, Q2, Q2) ∼ exp(
√

8NcY (4T − 3τ ) − 2aT + aτ ).Thus the logarithmi dq2/q2 integral takes the form
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with

L = ln(q2/Λ2) = ln(µ2/Λ2)eβτ/2



For the DPS prodution of two bb̄ pairs the major ontribution omesfrom a low q2 in the ase of Y = 5 orresponding to the LHC energy√
s = 14 TeVThat is the reation may be e�etively desribed by the 1 × 1 term; theformation of TWO parton branhes (one to two splitting) takes plaemainly at low sales.However at the RHIC energy, when the available rapidity interval is notlarge (Y = 2), the q2-dependene is not steep and the ontribution ausedby the splitting somewhere in the mid of evolution is still not negligible.The same an be said about the DPS W -boson prodution at the LHC.Here the upper edge of the q2-integral dominates. This part may bedesribed as the ollision of one pair of partons supplemented by a moreompliated, 2 → 4 or 2 → 2W , hard matrix element. However, learly weneed to aount also for ontributions from the whole q2-interval.



For the debatable double splitting diagrams,depending on the preise kinematis, we may deal:

• either with a single parton pair ollision (times the 2 → 4 hard subproess)in aordane with Blok, Dokshitzer, Frankfurt, Strikman;Gaunt, Stirling;Manohar,Waalewijn
• or with the ontribution of the 1 × 1 type where the formation of twoparton branhes (one to two splitting) takes plae at low sales

• or with the 2 × 2 on�guration where the splitting may happenEVERYWHERE (with more or less equal probabilities) during theevolution.In order to probe the QCD evolution of the double distribution funtionsbetter we suggest also to investigate the proesses with two quite di�erentsales, in partiular, prodution of a bb̄ pair (or J/ψ) with W , whihwas estimated at the LHC kinematial onditions using the fatorizedomponent only.


