

Effect of Dimension-6 Operators on VBS

Michael Rauch | VBSCAN WG1 Vidyo meeting, 21 Sep 2017

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

Motivation

- searches for new physics heavily ongoing in both ATLAS and CMS
- useful tool for heavy new physics: effective field theory (EFT)

integrate out heavy, non-SM degrees of freedom higher-dimensional operators appearing in Lagrangian

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{d>4} \sum_{i} \frac{f_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)}$$

 \rightarrow lowest relevant order: d = 6 (D6)

- effects from D6 operators also appear in processes with larger cross sections \rightarrow higher statistics
 - \rightarrow smaller errors
- \bullet \Rightarrow investigate impact of these constraints

Setup

- linear realization of the EFT
- D6: 59 operators when assuming
 - baryon/lepton-number conservation
 - flavour universality
- further restrictions:
 - P and C-even operators
 - no operators contributing to EW precision observables at tree level
 - no operators where data is lacking (e.g. HHH coupling)

List of Operators

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi \ G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \phi \\ \mathcal{O}_{W} &= (D_{\mu} \phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \phi) & \mathcal{O}_{B} = (D_{\mu} \phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger} \phi \right) \partial_{\mu} \left(\phi^{\dagger} \phi \right) \\ \mathcal{O}_{e\phi,33} &= (\phi^{\dagger} \phi) (\bar{L}_{3} \phi e_{R,3}) & \mathcal{O}_{u\phi,33} = (\phi^{\dagger} \phi) (\bar{Q}_{3} \tilde{\phi} u_{R,3}) & \mathcal{O}_{d\phi,33} = (\phi^{\dagger} \phi) (\bar{Q}_{3} \phi d_{R,3}) \\ \mathcal{O}_{WWW} &= \text{Tr} \left(\hat{W}^{\mu}{}_{\nu} \hat{W}^{\nu}{}_{\rho} \hat{W}^{\rho}{}_{\mu} \right) \end{split}$$

[Corbett et al.]

Vertex Contributions

List of Operators

$$\begin{aligned} \mathcal{O}_{\bar{G}\bar{G}} &= \phi^{\dagger} \phi \; G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \phi \\ \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{e\phi,33} &= (\phi^{\dagger}\phi)(\bar{L}_{3}\phi e_{R,3}) & \mathcal{O}_{u\phi,33} = (\phi^{\dagger}\phi)(\bar{Q}_{3}\tilde{\phi} u_{R,3}) & \mathcal{O}_{d\phi,33} = (\phi^{\dagger}\phi)(\bar{Q}_{3}\phi d_{R,3}) \\ \mathcal{O}_{WWW} &= \text{Tr} \left(\hat{W}^{\mu}{}_{\nu}\hat{W}^{\nu}{}_{\rho}\hat{W}^{\rho}{}_{\mu}\right) \end{aligned}$$

Modification of corresponding TGV vertices:

	\mathcal{O}_{WWW}	\mathcal{O}_W	\mathcal{O}_B	\mathcal{O}_{WW}	\mathcal{O}_{BB}	$\mathcal{O}_{\phi,2}$
WWZ	Х	Х	Х			
$WW\gamma$	Х	Х	Х			
HWW		Х		Х		Х
HZZ		Х	Х	Х	Х	Х
$HZ\gamma$		Х	Х	Х	Х	(X)
$H_{\gamma \gamma}$				Х	Х	(X)
wwww	Х	Х				
WWZZ	х	Х				
$WWZ\gamma$	Х	Х				
$WW\gamma\gamma$	х					

Measurements

[Butter, Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR]

Global fit of these operators to available ATLAS, CMS & LEP data (LHC: run-I measurements)

niggs data				
production/decay mode	ATLAS	CMS		
$H \rightarrow WW$	1412.2641	1312.1129		
$H \rightarrow ZZ$	1408.5191	1312.5353		
$H \rightarrow \gamma \gamma$	1408.7084	1407.0558		
$H \rightarrow \tau \bar{\tau}$	1501.04943	1401.5041		
$H \rightarrow b \overline{b}$	1409.6212	1310.3687		
$H \rightarrow Z\gamma$	ATLAS-CONF-2013-009	1307.5515		
ttH production	1408.7084, 1409.3122	1407.0558,1408.1682,1502.02485		
kinematic distributions	1409.6212,1407.4222			

Linne dete

Gauge boson data

Channel	Distribution	Data set	Reference
$WW ightarrow \ell^+ \ell'^- + \not\!\! E_T$ (0j)	Leading lepton p _T	ATLAS 8 TeV, 20.3 fb ⁻¹	1603.01702
$WW ightarrow \ell^+ \ell^{(\prime)-} + \not\!\! E_T (0j)$	$m_{\rho \rho(\prime)}$	CMS 8 TeV, 19.4 fb ⁻¹	1507.03268
$WZ \rightarrow \ell^+ \ell^- \ell^{(\prime)\pm}$	mT	ATLAS 8 TeV, 20.3 fb ⁻¹	1603.02151
$WZ \rightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + \not \! E_T$	Z candidate $p_T^{\ell\ell}$	CMS 8 TeV, 19.6 fb ⁻¹	CMS-PAS-SMP-12-006
$WV \rightarrow \ell^{\pm} j j + \not \! E_T$	V candidate p_T^{ij}	ATLAS 7 TeV, 4.6 fb ⁻¹	1410.7238
$WV ightarrow \ell^{\pm} jj + \not\!\! E_T$	V candidate p_T^{jj}	CMS 7 TeV, 5.0 fb ⁻¹	1210.7544
$WZ \rightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + \not\!\! E_T$	Z candidate $p_T^{\ell\ell}$	ATLAS 7 TeV, 4.6 fb ⁻¹	1208.1390
$WZ \rightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + \not\!\! E_T$	Z candidate $p_T^{\ell\ell}$	CMS 7 TeV, 4.9 fb ⁻¹	CMS-PAS-SMP-12-006

Fit Results

6/11

[Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR]

f/Λ ²			$\Lambda/\sqrt{ f }$ f/Λ^2			$\Lambda/\sqrt{ f }$
			[IeV] [TeV ²]	11.1	1.1	[lev]
20 -			- 0.25		111	
10 -			- 0.3	TTI	1 11	0.15
0 1	_ <u>↓</u> ↓ ∲∳ ↓∳ ↓	• •• •	0.5 40	- I ' T		-
-10		1 11 1	- 0.5	1 1	1 a -	102
-10		•	0.3 20		- T	0.2
-20	LHC-Higgs 95% Cl		0.2	I		- 0.3
-30 -	 LHC-Higgs + LHC-TGV 	+ LEP-TGV, 95% CL	0		♦₩	0.5
-40 -				++		0.5
-50	Titter		- 0.15			0.25
		<u> </u>][<u> </u>	0.2
U U			r.	ò	δ δ	
	¢ 4 ¢		n			
	$f_v / \Lambda^2 [\text{TeV}^{-2}]$	LHC-Higgs	+ LHC-TGV +	LEP_TG	V	
	.x/// [.ot]	Best fit	95% CL ir	iterval	•	
	f _{GG}	-4.5	(-9.5,	9.5)		
	f _{WW}	-0.1	(-3.1,	3.7)		
	f _{BB}	0.9	(-3.3,	6.1)		
	$f_{\phi,2}$	1.3	(-7.2,	7.5)		
	f _W	1.7	(-0.98,	5.0)		
	f _B	1.7	(-11.8,	8.8)		
	fwww	-0.06	(-2.6,	2.6)		
	fb	2.2	(-12.5,	7.3)		
	f_{τ}	-1.5	(36, 5	9)		
	ft	-6.3	(39, 6	8)		

Towards VBS

Take results and apply to vector-boson scattering

 \Rightarrow No contribution from \mathcal{O}_{GG} and fermionic operators

[Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR]

f_x/Λ^2 [TeV ⁻²]	LHC-Higgs + LHC-TGV + LEP-TGV			
	Best fit	95% CL interval		
f _{WW}	-0.1	(-3.1, 3.7)		
f _{BB}	0.9	(-3.3, 6.1)		
f _W	1.7	(-0.98, 5.0)		
f _B	1.7	(-11.8, 8.8)		
fwww	-0.06	(-2.6, 2.6)		
$f_{\phi,2}$	1.3	(-7.2, 7.5)		

For simplicity: use pos. and neg. 95% CL bound with other parameters set to zero \rightarrow slightly larger effect than true 95% CL bound

Additionally:

effect from dimension-8 operator $\mathcal{O}_{S,1}$

using ATLAS, $W^{\pm}W^{\pm}ii$, $\sqrt{S} = 8$ TeV, K-matrix unitarization

[arXiv:1405.6241]

$$f_{S,1}/\Lambda^4 \in (-1000, 1000)$$
TeV⁻⁴ (for $f_{S,0}/\Lambda^4 = 0$)

Results

Process: $pp \rightarrow W^+W^+jj \rightarrow \ell^+ \nu \ell^+ \nu jj$, $\sqrt{S} =$ 13 TeV, VBF cuts, NLO QCD

- last bin: overflow bin, m_{4ℓ} > 2000 GeV
- effect of D6 contributions in general small; largest one by O_{WWW}
- D8 operator clearly dominating

Results

Process: $pp \rightarrow W^+W^+jj \rightarrow \ell^+ \nu \ell^+ \nu jj$, $\sqrt{S} =$ 13 TeV, VBF cuts, NLO QCD

cross section when requiring $m_{4\ell} > m_{4\ell}^{\text{cut}}$

• \mathcal{O}_{WWW} contribution large only for very high $m_{4\ell} \leftrightarrow$ low event counts

excess of 10 events for $m_{4\ell} > 1$ TeV, $\mathcal{L} = 100$ fb⁻¹, SM contrib. of 10 events other D6 operators below 1 event

 \leftrightarrow unitarity violating contributions (?)

O_{S1} yielding large excess even without cuts on m_{4l}

excess of 200 events for $m_{4\ell}$ > 1 TeV, \mathcal{L} = 100 fb⁻¹

Results

 $\begin{array}{l} \text{Process:} \\ pp \rightarrow W^+ Zjj \\ \rightarrow \ell^+ \nu \ell^+ \ell^- jj, \\ \sqrt{S} = \text{13 TeV, VBF cuts,} \\ \text{NLO QCD} \end{array}$

exactly the same picture as in W^+W^+jj case

Conclusions

 study impact of dimension-6 and dimension-8 operators on VBS take 95%CL bounds from LHC run-I results show impact on 13 TeV VBS cross section

effect of dimension-6 operators in general small
 13 TeV diboson data will further reduce the allowed contributions

effect of dimension-8 operators dominates

 \rightarrow constraining power of experimental results

Backup

Backup

Dimension-6 operators

$$\begin{split} \mathcal{O}_{WWW} &= \mathrm{Tr} \left[\widehat{W}^{\mu}{}_{\nu} \widehat{W}^{\nu}{}_{\rho} \widehat{W}^{\rho}{}_{\mu} \right] \,, \\ \mathcal{O}_{W} &= \left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \,, \\ \mathcal{O}_{B} &= \left(D_{\mu} \Phi \right)^{\dagger} \widehat{B}^{\mu\nu} \left(D_{\nu} \Phi \right) \,, \\ \mathcal{O}_{WW} &= \Phi^{\dagger} \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi \,, \\ \mathcal{O}_{BB} &= \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \,, \\ \mathcal{O}_{\phi,2} &= \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \,, \end{split}$$

$$\begin{split} \mathcal{O}_{\widetilde{W}WW} &= \mathrm{Tr}\left[\widetilde{W}^{\mu}{}_{\nu}\widehat{W}^{\nu}{}_{\rho}\widehat{W}^{\rho}{}_{\mu}\right]\,,\\ \mathcal{O}_{\widetilde{W}} &= (D_{\mu}\Phi)^{\dagger}\,\widetilde{W}^{\mu\nu}\left(D_{\nu}\Phi\right)\,,\\ \mathcal{O}_{\widetilde{B}} &= (D_{\mu}\Phi)^{\dagger}\,\widetilde{B}^{\mu\nu}\left(D_{\nu}\Phi\right)\,,\\ \mathcal{O}_{\widetilde{W}W} &= \Phi^{\dagger}\widetilde{W}_{\mu\nu}\widehat{W}^{\mu\nu}\Phi\,,\\ \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger}\widetilde{B}_{\mu\nu}\widehat{B}^{\mu\nu}\Phi\,. \end{split}$$

Setup

Setup for processes W^+W^+jj and W^+Zjj

Cuts:

$$\begin{array}{ll} p_{T,j} > 30 \; {\rm GeV} \,, & |y_j| < 4.5 \,, & \Delta R_{j\ell} > 0.3 \\ p_{T,\ell} > 20 \; {\rm GeV} \,, & |y_\ell| < 2.5 \,, & \Delta R_{\ell\ell} > 0.3 \\ m_{ji} > 500 \; {\rm GeV} \,, & |\Delta y_{ij}| > 2.5 \,, & p_{T,\text{miss}} > 40 \; {\rm GeV} \end{array}$$

PDF: NNPDF 3.0 NLO with $\alpha_s = 0.118$