CERN-RRB-2017-091

STATUS OF ATLAS RESOURCES

Fido Dittus RRB presentation, 23 October 2017

Outline

RRB Doc. Reference	Title
CERN-RRB-2017-093	Request for the 2018 ATLAS M&O Budget
CERN-RRB-2017-092	ATLAS Upgrade Status Report 2017 – 2018
CERN-RRB-2017-058	Common Items for the Phase-II Upgrade of the ATLAS Detector (Addendum #17 to the ATLAS Construction MoU)

CERN-RRB-2017-093

ATLAS Resources Review Board, 23 October 2017

Request for the 2018 ATLAS M&O Budget

M&O A+B Evolution

Sharing of the 2018 ATLAS M&O Budget

M&O A+B Evolution (kCHF)

Evolution of the M&O Budget up to 2022 (MCHF)

The M&O A+B budget is kept flat at 21.4 MCHF with the help of the TDAQ buffer. In spring, an order for HLT processors worth 2.2 MCHF was cancelled because the supplier was unable to deliver the hardware at the contractually agreed prices. Meanwhile, a new order has been placed with first deliveries due in December. ATLAS is very grateful for the processors on loan from CERN-IT.

		appro	oved		requested		proje	cted	
	2014	2015	2016	2017	2018	2019	2020	2021	2022
Detector related costs	6'817	4'835	5'196	5'361	5'220	5'240	5'381	5'041	5'041
Magnet	220	220	220	220	220	220	220	220	220
Magnet controls	260	260	260	260	260	260	260	260	260
Magnet power supply	138	138	118	118	67	67	67	67	67
Gas systems	249	189	189	239	339	339	339	339	339
Gas consumption	1'150	1'150	1'150	1'150	1'150	970	1'060	1'150	1'150
Cooling systems	395	395	505	615	660	520	520	520	520
Cooling fluids(above –50°C)	80	80	80	110	110	80	80	80	80
External cryogenics	485	485	485	485	485	485	485	485	485
Cryogenic fluids (below –50°C)	0	0	0	0	0	0	0	0	0
Moving / hydraulic systems	90	90	90	90	140	90	90	90	90
Detector cafety cyclome	190	210	240	240	240	240	260	240	240
Chutdown activition	760	£10	240 E10	2 4 0 640	240 E10	240	760	240 E10	240 E10
General Technicel summer	1100	2(0	250	200	250	010 410	700	200	200
General lechnical support	1 190	308	339	399	359	419	400	390	390
UPS maintenance	100	100	100	50	50	100	100	50	50
Electronics pool rentals	0	20	20	20	20	20	20	20	20
Beam pipe & vacuum	960	60	310	165	50	60	60	60	60
Counting & control rooms	140	140	140	140	140	140	140	140	140
Safety	420	420	420	420	420	420	420	420	420
Secretariat	420	420	420	420	460	460	460	460	460
Secretarial assistance	300	300	300	300	340	340	340	340	340
Economat	20	20	20	20	20	20	20	20	20
Printing and publication	100	100	100	100	100	100	100	100	100
Collaborative tools	220	180	180	180	180	220	220	180	180
GSM phones: on-call service	50	10	10	10	10	50	50	10	10
Collaborative tools	170	170	170	170	170	170	170	170	170
Core computing (infractructure)	21128	2'254	2'200	2'254	2'254	2'254	2'254	2'254	2'254
Control computing (initiastructure)	101	2 3 3 4	2 309	2 3 3 4	2 334	2 3 3 4	2 3 3 4	2 3 3 4	2 334
Central computing environment	262	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
User support	303	363	303	303	363	363	303	363	363
Software process service	418	554	509	509	509	509	509	509	509
Database support	320	320	320	320	320	320	320	320	320
Central production operations	816	816	816	861	861	861	861	861	861
Hardware	30	30	30	30	30	30	30	30	30
On-line computing	2'384	5'287	4'371	4'485	4'191	3'356	3'582	4'869	4'962
System management	1'240	1'240	1'240	1'240	1'240	1'240	1'240	1'240	1'240
Data storage, (temporary on disk)	0	0	0	0	0	0	0	0	0
Detector controls	30	30	70	120	220	220	120	120	120
Computers/processors/LANs	954	3'719	2'718	2'494	2'417	1'480	1'888	2'427	3'302
Software licenses	70	70	70	70	70	70	70	70	70
Common deskton infrastructure	90	228	273	561	244	346	264	1'012	230
Test beams, calibration facilities	770	245	260	260	660	860	660	335	260
Conoral operation	40	40	200	200	55	55	55	55	200
General operation	40	40	45	45	35	35	35	35	45
Common electronics	45	45	45	45	43	45	45	45	45
Electronics pool rentals	45	0	0	0	0	0	0	0	0
Gas systems	0	0	0	0	0	0	0	0	0
Gas consumption	0	0	0	0	0	0	0	0	0
External cryogenics	0	0	0	0	0	0	0	0	0
Modifications	640	160	160	160	560	760	560	235	160
Laboratory operations	105	105	90	90	90	90	90	90	90
Assembly areas, clean rooms,	0	0	0	0	0	0	0	0	0
active storage areas	0	0	0	0	0	0	0	0	0
Workshops	50	50	50	50	50	50	50	50	50
Laboratory instruments	55	55	40	40	40	40	40	40	40
General services	1'576	1'219	1'219	1'267	1'249	1'808	1'808	1'287	1'249
Cooling & ventilation	344	344	344	344	344	344	344	344	344
Power distribution system	77	77	77	77	77	77	77	77	77
Hoorer transmont	60	60	60	60	60	200	200	60	60
Cranas	460	222	222	240	222	200	200	240	222
Cranes	460	222	222	240	222	522	522	240	222
Cars	20	20	20	20	20	20	20	20	20
Survey	210	91	91	121	121	210	210	121	121
Storage space	0	0	0	0	0	0	0	0	0
Common desktop infrastructure	30	30	30	30	30	30	30	30	30
Technical Expertise	130	130	130	130	130	160	160	150	130
Outreach	245	245	245	245	245	245	245	245	245
TOTALS without power	14'420	14'645	14'045	14'418	14'404	14'388	14'555	14'616	14'596
Descent Power	01000	212000	21010	2/2000	2/200	212000	212000	21010	212000
rower	2 200	2 200	2 200	2 200	2 200	2 200	2 200	2 200	2 200
GRAND TOTALS	16'620	16'845	16'245	16'618	16'604	16'588	16'755	16'816	16'796

Request for the 2018 M&O A Budget

16.6 MCHF, including full energy

Cost drivers by activity:

- 1. Technical services8.5 MCHFincl. Energy (not invoiced to MS)2.2 MCHF
- 2. On-line Computing 4.1 MCHF
 incl. TDAQ hw replacements 2.6 MCHF
 to be deposited in the buffer
- 3. Core computing (24.5 FTE) 2.4 MCHF
- 4. Magnet & Cryogenics 1.6 MCHF

Note: points 1-4 above make overlapping contributions to the table on the left.

Request for the 2018 M&O B Budget

Details of the ATLAS 2018 M&O-B Budget (kCHF)

Item & Cost Driver	Pixel	SCT	TRT	IDGen	LAr	TileC	Muon	FD	TDAQ	Comp.	TOTAL
Mechanics						10	40	10	0		60
Gas systems			20			8	0	0	0		28
Cryo-systems							0	0	0		0
Cooling system					5	3	5	1	0		14
FE electronics					40	60	0	2	0		102
Std. electronics (PS, crates, RO mod)	230	285	190	45	175	170	220	33	51		1'399
Controls (DCS, DSS)	10	20	10	5	35	15	60	7	0		162
Sub-detector spares						75	0	12	0		87
Areas (System tests, laboratory ops.)	90	20	30	120	10	50	95	24	0		439
Communications	1	5		8	5	5	10	3	0		37
Store items	24	30	30	80	10	20	20	18	0		232
TOTAL (excl. hired manpower at CERN)	355	360	280	258	280	416	450	110	51		2'560
Hired Manpower at CERN (kCHF)	200	277	265	315	390	188	380	301	0		2'316
Institute manpower, OTP class 3 (FTE)	30	24	27	30	37	28	50	33	0	138	397
Reduction based on surplus											
from prev. years (see text)					-80						-80
TOTAL M&O-B to be invoiced to FAs	555	637	545	573	590	604	830	411	51		4'796

ATLAS M&O-B budgets 2014–2022 (kCHF)

	í	approved	ł		requested		projected	ł	
	2014	2015	2016	2017	2018	2019	2020	2021	2022
PIX	610	655	555	555	555	555	555	555	555
SCT	637	637	517	637	637	637	637	637	637
TRT	545	545	545	545	545	545	545	545	545
IDGen	673	623	573	573	573	723	623	573	573
LAr	1'051	700	630	610	590	615	645	610	630
TileC	647	604	544	604	604	647	647	604	604
Muons	570	570	800	830	830	800	700	600	600
FD	297	219	331	431	411	239	242	288	288
TDAQ	0	0	0	0	51	51	51	172	172
TOTALS	5'030	4'553	4'495	4'785	4'796	4'812	4'645	4'584	4'604

4.8 MCHF Total

- Cost drivers by activity:
- 1. Mechanics0.1 MCHFincl. cooling & gas systems
- 2. Electronics
- 3. Areas, stores, spares
- 4. Technical support
- 5. Institute manpower for class 3 operation tasks incl. for core computing

1.6 MCHF 0.8 MCHF 2.3 MCHF 397 FTE

138 FTE

Request for the 2018 M&O B Budget

Item & Cost Driver	Pixel	SCT	TRT	IDGen	LAr	TileC	Muon	FD	TDAQ	Comp.	TOTAL
Mechanics						10	40	10	0		60
Gas systems			20			8	0	0	0		28
Cryo-systems							0	0	0		0
Cooling system					5	3	5	1	0		14
FE electronics					40	60	0	2	0		102
Std. electronics (PS, crates, RO mod)	230	285	190	45	175	170	220	33	51		1'399
Controls (DCS, DSS)	10	20	10	5	35	15	60	7	0		162
Sub-detector spares						75	0	12	0		87
Areas (System tests, laboratory ops.)	90	20	30	120	10	50	95	24	0		439
Communications	1	5		8	5	5	10	3	0		37
Store items	24	30	30	80	10	20	20	18	0		232
TOTAL (excl. hired manpower at CERN)	355	360	280	258	280	416	450	110	51		2'560
Hired Manpower at CERN (kCHF)	200	277	265	315	390	188	380	301	0		2'316
Institute manpower, OTP class 3 (FTE)	30	24	27	30	37	28	50	33	0	138	397
Reduction based on surplus											
from prev. years (see text)					-80						-80
TOTAL M&O-B to be invoiced to FAs	555	637	545	573	590	604	830	411	51		4'796

Details of the ATLAS 2018 M&O-B Budget (kCHF)

ATLAS M&O-B budgets 2014-2022 (kCHF)

	í	approved	l		requested		projected	1	
	2014	2015	2016	2017	2018	2019	2020	2021	2022
PIX	610	655	555	555	555	555	555	555	555
SCT	637	637	517	637	637	637	637	637	637
TRT	545	545	545	545	545	545	545	545	545
IDGen	673	623	573	573	573	723	623	573	573
LAr	1'051	700	630	610	590	615	645	610	630
TileC	647	604	544	604	604	647	647	604	604
Muons	570	570	800	830	830	800	700	600	600
FD	297	219	331	431	411	239	242	288	288
TDAQ	0	0	0	0	51	51	51	172	172
TOTALS	5'030	4'553	4'495	4'785	4'796	4'812	4'645	4'584	4'604

Note:

- 1. In agreement with the RRB Scrutiny Group, TDAQ has now been added as a system with an M&O-B budget (for FTK and other custom-built trigger electronics).
- 2. The LAr and Tile Calorimeter Phase-I upgrade projects are not expected to give rise to relevant increases of the M&O-B budgets of their parent systems.
- 3. However, the M&O-B budget of the Muon Spectrometer is expected to increase once the related Phase-I upgrade projects (NSW and BIS78) are being completed.
 - > To be added to future projections next year
- 4. The Scrutiny Group already accepted the concept of including 40% of the Muon power supply replacement costs in M&O-B.

M&O A in-kind contributions

ORE computing tasks (809 kCHF)

- The following Funding Agencies offer in-kind contributions for these tasks: China (0.2 FTE), IN2P3 (0.9 FTE), CEA (0.2 FTE), BMBF (1.5 FTE), Italy (1.6 FTE), Russia (0.6 FTE), UK (0.7 FTE), US DOE HEP (2.8 FTE) and US NSF HEP (0.6 FTE). The average cost is 89kCHF/FTE.
- General operations support (184 kCHF)
 - Additional in-kind contributions for operations support are offered by US DOE HEP (166 kCHF) and US NSF HEP (18 kCHF).

Proposed Sharing of M&O Contributions for ATLAS in 2018 by Funding Agency (kCHF)

Funding Agency Argentina Armenia	M&O-A		Categor	y A items		Cat. B	Iotal A + B
Argentina Armenia		budgeted	adjusted	in-kind	invoiced ²	budgeted ³	invoiced ⁴
Argentina Armenia							
Armenia	6	53	53	1	53	3	56
	0	0	0		0	0	0
Australia	15	133	133		133	47	180
Austria	3	27	23		23	9	32
Azerbaijan	1	9	9		9	0	9
Belarus	2	18	18		18	1	19
Brazil	14	124	124		124	6	130
Canada	65	575	564		564	202	766
Chile	10	89	89		89	4	93
China NSFC+MSTC	48	425	425	18	407	21	428
Colombia	4	35	35		35	2	37
Czech Republic	39	345	299		299	17	316
Denmark	11	97	84		84	34	118
Erance IN2P2	114	1'009	875	80	705	354	1'149
France CEA	24	212	184	20	164	74	229
Coorgia	6	53	53	20	53	2	230 E6
Georgia	152	1'254	11175	120	1/045	475	1/520
Company DEEX	155	227	284	150	2045	115	1 520
Germany DEST	37	327	204		204	115	399
Germany MP1	21	186	161		161	60	226
Greece	15	133	115		115	7	122
Hong Kong	10	89	89		89	31	120
Israel	29	257	223		223	13	236
Italy	169	1'496	1'298	144	1'154	525	1'679
Japan	76	673	661		661	236	897
Morocco	11	97	97		97	5	102
Netherlands	24	212	184		184	74	258
Norway	16	142	123		123	50	173
Poland	29	257	223		223	13	236
Portugal	15	133	115		115	7	122
Romania	16	142	123		123	7	130
Russia	64	566	494	54	440	28	468
JINR	26	230	230		230	11	241
Serbia	5	44	38		38	2	40
Slovak Republic	10	89	77		77	4	81
Slovenia	8	71	61		61	4	65
South Africa	9	80	80		80	4	84
Spain	49	434	376		376	152	528
Sweden	30	266	230		230	93	323
Switzerland	25	221	192		192	78	270
Tainei	8	71	71		71	3	74
Turkey	11	97	84		84	5	89
United Kingdom	191	1'690	1'467	62	1'405	593	1'998
US DOF HEP	274	2'425	2'393	412	1'981	851	2'832
US NSE HEP	65	575	575	73	502	202	704
US DOE NP	6	53	53	13	52	102	704
US DOE NP	6	23	25	-	25	19	72
CERN	* 102	33	33	l		217	1/100
CERN	102	903	/83		783	31/	1100
Other -	6	53	50		50	18	68
	1'876	16'604	15'128	993	14'135	4'796	18'931

Proposed Sharing of System-specific M&O-B Contributions for ATLAS in 2018 by Funding Agency (kCHF)

			C	- D 1		1					C
		0.07	Catego	оry-ы i	tems bu	agetea			TD10	m . 1	Comp. b
unding Agency	Pixel	SCI	IKI	IDGen	LAr	TileC	Muon	FD	TDAQ	Iotal	(F1E)
Argentina							3			3	0
Armenia											0
Australia		29		17					1	47	1
Austria		1	1		2		5			9	0
Azerbaijan											0
Belarus							1			1	0
Brazil						6				6	1
Canada			9	2	172			19		202	5
Chile							4			4	1
China NSFC+MSTC					4		17			21	4
Colombia							2			2	0
zech Republic	2	2		1		4		8		17	3
Denmark			29	4					1	34	1
rance IN2P3	64			12	121	101		56	-	354	8
France CEA	- 01				40	101	34			74	2
Taorgia	\vdash				1		2			2	
Cormany BMBE	144	57		49	43		- <u>-</u>	75	8	475	11
DEEV	144	31		77	- 13		21	40	0	115	2
Sermany DEST		20		0	35		31	49		115	3
Sermany MPI	-	20		9	18		18			65	2
sreece	-						7			7	1
long Kong							31			31	1
srael							11		2	13	2
taly	164			60	36	44	141	75	5	525	12
apan	5	87		33			107		4	236	6
Morocco					5					5	1
Netherlands		16		7			49		2	74	2
Norway		28		22						50	1
Poland		1	6	1				5		13	2
Portugal						4		3		7	1
Romania						7				7	1
Russia			12	3	3	6	4			28	5
INR			2	1	1	5	2			11	2
Serbia					2					2	0
Slovak Republic					4					4	1
lovenia		2		2						4	1
South Africa	H	-		-		4				4	
innin		20		31	15					152	4
	H	4	33	7	4	18		27	<u> </u>	02	2
Swetten d	52	4	33	24	4	10		21	2	95	2
Switzenand	32	1		24	1				2	/8	2
laipei	1	1			1					3	1
urkey	20	2/10	5	107						5	1
United Kingdom	30	369		186					8	593	14
JS DOE HEP	56		245	78	72	218	177		5	851	20
JS NSF HEP	15		61	13	11	45	48		9	202	5
JS DOE NP								19		19	0
JS NSF NP								12		12	0
CERN	22		142	11		56	19	63	4	317	7
Other							18			18	0
fotal	555	637	545	573	590	604	830	411	51	4'796	138
	-										

Notes:

Based on authors, modulated by CORE contributions

Core computing in Category B (Comp. B) is expressed in Full-Time-Equivalents (FTE). Figure 0 refers to an effort <0.

Table 2

CERN-RRB-2017-093

Request for the 2018 ATLAS M&O Budget

CERN-RRB-2017-093

Request for the 2018 ATLAS M&O Budget

Fido Dittus, Status of ATLAS Resources

Ş,

CERN-RRB-2017-092

ATLAS Resources Review Board, October 23, 2017

For RRB information

ATLAS Upgrade Status Report 2017 – 2018

Phase-I Status

- Progress report on
 Phase-I upgrade projects
- Phase-I "Money Matrix" (no change since April)
- CORE Values of Phase-I deliverables expected to be realized in 2017 and in 2018

Phase-II Progress

Funding Agency	nSW	LAr-E	TileC	FTK	TDAQ	SMALL PROJECTS	Total
Argentina					50		50
Armenia							
Australia				160			160
Austria							
Azerbaijan							
Belarus			4				4
Brazil		100			80		180
Canada	900	229				33	1'162
Chile	334						334
China NSFC+MSTC	733					121	854
Colombia					100		100
Czech Republic			50			184	234
Denmark					170		170
France IN2P3		1'588					1'588
France CEA	970	777					1'747
Georgia			32				32
Germany BMBF	1'225	384		125	1'556	113	3'402
Germany DESY				124			124
Germany MPI						676	676
Greece	300						300
Hong Kong							
Israel	1'004				403		1'407
Italy	1'017	293		1'181	37	110	2'638
Japan	375	538		243	600		1'756
Morocco							
Netherlands	148				550		698
Norway						32	32
Poland					100	128	227
Portugal			45		30	3	78
Romania	150		32		102		284
Russia	382	192	50		100	246	970
JINR	120	99	50				269
Serbia							
Slovak Republic			32				32
Slovenia	100						
South Africa	100		30				130
Spain			32			146	178
Sweden				2.00	50	<u> </u>	50
Switzerland				360		336	696
Taipei	156						156
Turkey							
United Kingdom				1010	1'664		1'664
US DOE+NSF	2'551	2'548		1'818	1'236	206	8'359
CERN	818	843	43		757	250	2'711
Other				24†		95‡	119
Total	11'283	7'590	400	4'035	7'585	2'680	33'573

by Funding Agency [kCHF]

Notes:

1. The CORE sharing of NSW, LAr-E, TileC, FTK and TDAQ are defined in their respective MoUs † EU FP7 IAPP Grant 324318

‡ Remaining uncovered costs of the AFP project

Table 1

Phase-I Status

The sharing of the CORE - S costs, defined in the MoUs, is summarized here in the Phase-I "Money Matrix".

Phase-I Upgrade TDRs and MOUs

CERN-LHCC-2013-006 CERN-RRB-2014-050	Construction of the ATLAS New Small Wheel (NSW) Sub-Detector
CERN-LHCC-2013-017 CERN-RRB-2014-051 CERN-RRB-2015-064	Upgrade of the Liquid Argon Calorimeter Trigger electronics
CERN-RRB-2014-052	Upgrade of the ATLAS Tile Calorimeter
CERN-LHCC-2013-007 CERN-RRB-2014-053 CERN-RRB-2015-001	Construction of the FTK Sub-System
CERN-LHCC-2013-018 CERN-RRB-2014-054	Upgrade of the Trigger and Data Acquisition System
CERN-LHCC-2015-009	ATLAS Forward Proton TDR

Phase-I Progress

CORE Values of ATLAS Phase-I Upgrade Deliverables expected to be realized in 2017 by Funding Agency

Funding Agency	nSW	LAr-E	TileC	FTK	TDAQ	SMALL PROJECTS	Total
Argentina					50		50
Armenia							
Australia				83			83
Austria							
Azerbaijan							
Belarus			4				4
Brazil		96					96
Canada	380	126				10	516
Chile	80						80
China NSFC+MSTC	63					41	104
Colombia					100		100
Czech Republic			50				50
Denmark					35		35
France IN2P3		424					424
France CEA	466	156					622
Georgia			16				16
Germany BMBF	885	62		13	72		1'032
Germany DESY							
Germany MPI						160	160
Greece	136						136
Hong Kong							
Israel	370				40		410
Italy	412	29		416			857
Japan	104	113		15	325		557
Morocco							
Netherlands	91						91
Norway						3	3
Poland						25	25
Portugal			15			3	18
Romania	30						30
Russia	79	5	50			50	184
JINR	47	16	50				113
Serbia						1	
Slovak Republic			16			1 1	16
Slovenia						1	
South Africa	15		30			1	45
Spain			32			15	47
Sweden							
Switzerland				140		1	140
Taipei	36					1	36
Turkev						1	
United Kingdom					51		51
US DOE+NSF	403	628		969	691	22	2'713
CERN	367	20	20			17	424
Other				24†		95±	119
Common Fund	1'100						1'100
T-1-1		11674	0.02	11/((0)	110(1	440	101407
Lotal		114-17/1	1 1 2 2	1.660	1 36/	1 442	101/19/7

- Notes
- 1. These numbers represent CORE values (in 2013 CORE CHF) for items expected to be delivered in 2017 † EU FP7 IAPP Grant 324318
- ‡ Remaining uncovered costs of the AFP project

- See CERN-RRB-2017-092 and the presentation by Ludovico Pontecorvo for detailed, up-to-date information.
- All Phase-I projects have made substantial progress since the last RRB.
- Second Structure
 Second Structure
- The New Small Wheel project is still highly critical
 - Top ATLAS priority, full attention by ATLAS management;
 - According to the new, detailed schedule (1500 items), installation in LS2 may still be possible – just!
 - Additional manpower to be found to support integration in parallel to chamber construction;
 - CORE over-costs to be wrapped up comprehensively in 2019 20.

Phase-I Progress

CORE Values of ATLAS Phase-I Upgrade Deliverables expected to be realized in 2017 by Funding Agency

Funding	nSW	LAr-E	TileC	FTK	TDAO	SMALL	Total
Agency	now	L'II L	mee	IIK	IDilg	PROJECTS	Iotai
Argentina					50		50
Armenia							
Australia				83			83
Austria							
Azerbaijan							
Belarus			4				4
Brazil		96					96
Canada	380	126				10	516
Chile	80						80
China NSFC+MSTC	63					41	104
Colombia					100		100
Czech Republic			50				50
Denmark					35		35
France IN2P3		424					424
France CEA	466	156					622
Georgia			16				16
Germany BMBF	885	62		13	72		1'032
Germany DESY							
Germany MPI						160	160
Greece	136						136
Hong Kong							
Israel	370				40		410
Italy	412	29		416			857
Japan	104	113		15	325		557
Morocco							
Netherlands	91						91
Norway						3	3
Poland						25	25
Portugal			15			3	18
Romania	30						30
Russia	79	5	50			50	184
JINR	47	16	50				113
Serbia							
Slovak Republic			16				16
Slovenia							
South Africa	15		30				45
Spain			32			15	47
Sweden							
Switzerland				140			140
Taipei	36						36
Turkey							
United Kingdom					51		51
US DOE+NSF	403	628		969	691	22	2'713
CERN	367	20	20			17	424
Other		i –		24†		95‡	119
Common Fund	1'100	İ				† t	1'100
Total	5'064	1'674	283	1'660	1'36/	442	10'487
10(a)	5004	10/4	203	1 000	1 304	444	10 407

CORE Values of ATLAS Phase-I Upgrade Deliverables expected to be realized in 2018 by Funding Agency

Funding Agency	nSW	LAr-E	TileC	FTK	TDAQ	SMALL PROJECTS	Total
Argentina							
Armenia							
Australia							
Austria							
Azerbaijan						<u> </u>	
Belarus						<u> </u>	
Brazil							
Canada	282	92					374
Chile	60						60
China NSFC+MSTC	476					80	556
Colombia							000
Czech Republic							
Denmark					35		35
France IN2P3		1'022			00		1'022
France CEA	429	621					1'050
Georgia	12)	021	16				16
Cormany BMBE	264	313	10		680	├ ──┤	1'257
Germany DESY	204	515			000		1257
Cermany MPI						145	145
Greece	156					145	145
Hong Kong	150					<u> </u>	150
Israel	382				230		612
Italy	540	262		442	250	90	1/271
Ianan	212	411		442	45	90	669
Japan Morocco		411			43		000
Nothorlands	20				526		546
Nemienanus	20				320	<u> </u>	540
Poland					100		100
Portugal			30		100		20
Pomonio	120		50		67	<u> </u>	107
Romania	120	190			100	50	107
KUSSIA	118	180			100	50	448
JINK	43	63				├ ──┤	120
Serbia			1(II	10
Slovak Kepublic			10			├ ───┤	10
Siovenia						I	
South Africa	- 75					───┤	75
Spain					50	II	
Sweden				100	50	I	50
Switzeriand	120			100		L	100
Татрет	120						120
Iurkey					11500		11500
United Kingdom	1/021	115 4 4		11.4	1 509	10	1'509
US DUE+NSF	1931	1 544	00	114	273	16	3.878
CEKN	226	794	23		630		T 673
Otner (^)							
Common Fund	1'150						1'150
Total	6'604	5'324	85	656	4'282	381	17'331

Notes:

1. These numbers represent CORE values (in 2013 CORE CHF) for items expected to be delivered in 2018 (*) EU FP7 IAPP Grant 324318

Notes:

1. These numbers represent CORE values (in 2013 CORE CHF) for items expected to be delivered in 2017 + EU FP7 IAPP Grant 324318

‡ Remaining uncovered costs of the AFP project

Phase-II Progress

- ITk-strip detector TDR approved by the CERN Research Board in June 2017
- All five remaining TDRs in different stages of preparation and review
- More details in CERN-RRB-2017-092 and in the presentation by Karl Jakobs earlier in this session
- Confidential Money matrix provided to chairs of RRB, LHCC, UCG
 - To be made available to the Funding Agencies in April 2018
 - See presentations by Eckhard Elsen and Francesco Forti in the RRB Plenary session
- Aiming for MoUs by Q4 2018

ATLAS COLLABORATION

CERN-RRB-2017-058

Addendum No. 17

to the Memorandum of Understanding for Collaboration in the Construction of the ATLAS Detector

Common Items for the Phase-II Upgrade of the ATLAS Detector

CERN-RRB-2017-058

- Draft presented to RRB already in April this year
- Final version now available
- Total cost = 24.420 MCHF
- Flat funding profile over
 9 years, 2018–2026
 2.713 MCHF/year

12.10.2017

Page 1

ATLAS COLLABORATION

CERN-RRB-2017-058

ANNEX 4: Sharing of the 2018 Phase-II Upgrade Common Fund budget by Funding Agency

In accordance with Article 4.4, the total budget for the Phase-II Upgrade Common Fund of 24'420 kCHF (Annex 3) is spread flat over 9 years, from 2018 to 2026. The budget to be shared among the Funding Agencies during this period is thus 2'713.3 kCHF/year. The sharing is calculated year-by-year in the same way as for M&O-A (Article 4.5): the contributions from the Funding Agencies for year *n* will be calculated in proportion to the number of scientific authors counted for M&O on September 9 in year *n*-1.

The table below shows the 2018 contributions by Funding Agency thus obtained on the basis of the M&O author count snapshot taken on 09.09.2017:

	M&O aut	hor counts	Common Fund	
Funding Agency	on 09/	09/2017	Contribution [kCHF	
Argentina	6	0.32%	8.7	
Armenia	0	0.00%	-	
Australia	15	0.80%	21.7	
Austria	3	0.16%	4.3	
Azerbaijan	1	0.05%	1.4	
Belarus	2	0.11%	2.9	
Brazil	14	0.75%	20.2	
Canada	65	3.46%	94.0	
Chile	10	0.53%	14.5	
China NSFC+MSTC	48	2.56%	69.4	
Colombia	4	0.21%	5.8	
Czech Republic	39	2.08%	56.4	
Denmark	11	0.59%	15.9	
France IN2P3	114	6.08%	164.9	
France CEA	24	1.28%	34.7	
Georgia	6	0.32%	8.7	
Germany BMBF	153	8.16%	221.3	
Germany DESY	37	1.97%	53.5	
Germany MPI	21	1.12%	30.4	
Greece	15	0.80%	21.7	
Hong Kong	10	0.53%	14.5	
Israel	29	1.55%	41.9	
Italy	169	9.01%	244.4	
Japan	76	4.05%	109.9	
Morocco	11	0.59%	15.9	
Netherlands	24	1.28%	34.7	
Norway	16	0.85%	23.1	
Poland	29	1.55%	41.9	
Portugal	15	0.80%	21.7	
Romania	16	0.85%	23.1	
Russia	64	3.41%	92.6	
JINR	26	1.39%	37.6	
Serbia	5	0.27%	7.2	
Slovak Republic	10	0.53%	14.5	
Slovenia	8	0.43%	11.6	
South Africa	9	0.48%	13.0	
Spain	49	2.61%	70.9	
Sweden	30	1.60%	43.4	
Switzerland	25	1.33%	36.2	
Taipei	8	0.43%	11.6	
Turkey	11	0.59%	15.9	
United Kingdom	191	10.18%	276.3	
US DOE HEP	274	14.61%	396.3	
US NSF HEP	65	3.46%	94.0	
US DOE NP	6	0.32%	8.7	
US NSF NP	4	0.21%	5.8	
CERN	102	5.44%	147.5	
Other	6	0.32%	8.7	
Total	1876	100.00%	2'713.3	
	13/0	100.0076	2713.5	

04.10.2017

Page 13

CERN-RRB-2017-058

- Draft presented to RRB already in April this year
- Final version now available
- Total cost = 24.420 MCHF
- Flat funding profile over
 9 years, 2018–2026
 2.713 MCHF/year

To be shared year-by-year exactly like M&O; the sharing by FA in 2018 is detailed in Annex 4.

ATLAS COLLABORATION

CERN-RRB-2017-058

ANNEX 3: Breakdown and cost estimates of Phase-II Upgrade Common Items

A detailed work breakdown structure (WBS) has been developed to understand the needs for support and additional infrastructure of the ATLAS Phase-II upgrade projects as well as possible. The table below shows the first two levels of the WBS, together with the corresponding cost estimates. Some more details about the main cost drivers can be found in Annex 5.

WBS	Description	kCHF
7	Common Items	24'420
7.1	Project Management	-
7.1.1	Global Project Plan	-
7.1.2	Installation schedule	-
7.1.3	Resources & Costing	-
7.1.4	Management tools	-
7.1.5	Documentation Web service	-
7.1.6	Quality Assurance	
7.2	Experiment Layout	4'775
7.2.1	Mechanical Interfaces & Envelopes	
722	Decommissioning	260
7.2.3	Shut Down configurations	485
7.2.4	Cabling	3'490
725	Infrastructure Integration	540
7.3	System interfaces & Facilities	9'583
731	Detector E/E DAO	
732	Detector DCS interface	
733	Control Network	100
734	Cooling & Ventilation	2'400
735	Detector Cooling	2'355
736	Gas systems	2 333
737	Electrical network	4'628
7.5.7	Common Electronics	3'207
7.4	Eront Ends electronics	3 207
7.4.1	Power distribution	614
7.4.2	Central DCS	767
7.4.5	Control DES	EG1
7.4.4	Medular electronics	170
7.4.5	Rack infrastructure	1'095
7.4.0	Safety	2'112
7.5.1	Fire Detection and extiction systems	1/021
7.5.1	Padioprotection management	740
7.5.2	Work anvironment (conditions	201
7.5.4	General safety infrastructure	501
7.5.4	Machine Interfaces	1'155
7.6.1	HI -I HC liaison	
7.6.2	ATLAS simulations	
7.6.2	Forward detectors	- 60
7.0.3	Machine Interface definition	1'005
7.0.4	Surtem Support	2'972
7.7.1	New Small Wheel	2 0/2
7.7.1	Muone MOT & RBC	2'102
7.7.2	RW and EQ	2 102
7.7.3	Dic 7/9	30
7.7.4	5137/6	-
7.7.5	I AR & TiloCol	120
7.7.0	HGTD	123
7.7.7	fielding	510
7.8	Shielding	400
7.0.1	additional abialding	488
7.8.2	NID	28
7.0.3	Surface facilities	200
7.9	Storage	200
7.9.1	SP1 octobrion	
7.9.2	B180 labs	
7.5.5	Workshop	
7.9.4	ppc	
7.9.5	505 50V1	200
7.9.6	JUNI	200

04.10.2017

Page 12

• ATLAS Common Fund – WHY?

- needed to pay for detectorspecific infrastructure
- All FAs have to contribute !

CERN Host Lab responsibilities

- see the General Conditions for Experiments at CERN
- provision of general infrastructure and services

Analysis of CERN support requirements for the LHC Experiments in the context of Hostlab Responsibilities

LHC Experiments Technical and Engineering Meeting (LETEM) February 2017

DOCUMENT PREPARED BY:	DOCUMENT CHECKED BY:	DOCUMENT APPROVED BY:
A. Ball (EP/CMX)	N. Bellegarde (EN/EL)	R. Losito (EN)
M. Brugger (EN/EA)	K. Foraz (EN/ACE)	M. Kramer (EP)
R. Lindner (EP/LBO)	R. Forti (EP/DI)	
L. Pontecorvo (EP/ADO)	F. Hahn (EP/DI)	
W. Riegler (EP/AIO)	M. Nonis (EN/CV)	

supported by CERN departmental resources, incl. the consolidation budget at the disposal of the ATLAS Technical Coordinator

7	Common Items	24'420
7.1	Project Management	
7.1.1	Global Project Plan	-
7.1.2	Installation schedule	-
7.1.3	Resources & Costing	-
7.1.4	Management tools	-
7.1.5	Documentation Web service	-
7.1.6	Quality Assurance	-
7.2	Experiment Layout	4'775
7.2.1	Mechanical Interfaces & Envelopes	-
7.2.2	Decommissioning	260
7.2.3	Shut Down configurations	485
7.2.4	Cabling	3'490
7.2.5	Infrastructure Integration	540
7.3	System interfaces & Facilities	9'583
731	Detector E/E DAO	
732	Detector DCS interface	
733	Control Network	100
734	Cooling & Ventilation	2'400
735	Detector Cooling	2'355
736	Gas systems	100
7.3.0	Electrical network	1/628
7.5.7	Common Electronics	2'207
7.4	Eropt Ends electronics	5 207
7.4.1	Pront-Ends electronics	-
7.4.2	Control DCS	767
7.4.5	Central DCS	707
7.4.4	Central DSS	170
7.4.5	Niodular electronics	1/0
7.4.6	Rack Infrastructure	1 095
7.5	Safety	2'112
7.5.1	Fire Detection and extiction systems	1'021
7.5.2	Radioprotection management	740
7.5.3	Work environment/conditions	301
7.5.4	General safety infrastructure	50
7.6	Machine Interfaces	1'155
7.6.1	HL-LHC liaison	-
7.6.2	ATLAS simulations	-
7.6.3	Forward detectors	60
7.6.4	Machine Interface definition	1'095
7.7	System Support	2'872
7.7.1	New Small Wheel	-
7.7.2	Muons MDT & RPC	2'102
7.7.3	BW and EO	36
7.7.4	BIS7/8	-
7.7.5	ITK	518
7.7.6	LAR & TileCal	129
7.7.7	HGTD	87
7.8	Shielding	516
7.8.1	SX1 shielding (fast neutrons)	488
7.8.2	Additional shielding	28
7.8.3	NJD	-
7.9	Surface facilities	200
7.9.1	Storage	-
7.9.2	SR1 extension	-
7.9.3	B180 labs	-
7.9.4	Workshop	
7.9.5	BB5	
7.9.6	SDX1	200
		-00

A detailed work breakdown structure (WBS) has been developed to understand the needs of the ATLAS Phase-II upgrade projects for support and additional infrastructure as best as possible.

ATLAS COLLABORATION

CERN-RRB-2017-058

ANNEX 5: Summary of the main cost drivers

The relatively large increase of 7 MCHF of the Common Item costs with respect to the Scoping Document (CERN-LHCC-2015-020, LHC-G-166) is due mainly to the much better understanding of the needs of the upgraded detector for:

- · Electrical Infrastructure
- Cooling and Ventilation and Detector Cooling
- Cabling
- Rack Infrastructure

The main cost drivers in these four areas are briefly discussed in the following.

Electrical infrastructure

The total cost of this WBS item is 4628 kCHF as detailed in the table below.

WBS Code	Element	Contact Person	Upgrade Total CORE Cost [kCHF]
7	Common items (Technical Coordination)		
7.3.7	Electrical network	W. Iwanski	4628
7.3.7.1	Normal Power (SDX1)		460
7.3.7.2	New Diesel UPS (SDX1)		1992
7.3.7.3	New bc UPS SX1 (USA15/UX15)		1125
7.3.7.4	Normal UPS (US15)		175
7.3.7.5	bc UPS (US15)		190
7.3.7.6	New Diesel Surface		278
7.3.7.7	Normal Power (USA15/UX15)		194
7.3.7.8	bc UPS USA15		214

A detailed study has been performed to quantify the needs of the upgraded detector in terms of electrical power, classifying the needs by type (uninterrupted or normal power) and the location where the power is needed (surface or service caverns). The result is that an additional 1.8 MW are needed in the underground caverns for the powering and read-out of the detectors (the main contributors are the ITk, LAr Read-out and TDAQ). On the surface, an additional 1.2 MW are needed for the upgraded HLT farm and for the primary chiller for the CO2 detector cooling plant used by the ITk. The costs for these new installations have been evaluated with the CERN EN-EL group who will be the main supplier for these improvements. The cost estimates are based on the costs of similar installations at the time of the original construction of ATLAS, which have been escalated to account for the increased costs of material and labour today.

Cooling and Ventilation

The upgraded ATLAS detector will consume substantially more electrical power in the underground caverns (about 1.8 MW as discussed above). To cope with this additional power dissipation, a corresponding increase in the capacity of the cooling and ventilation systems is required.

The present cooling tower circuit at Point 1 has a remaining margin of 9 MW. However, to access this additional capacity, the temperature difference between the supply and return water must be increased. The chilled water system has only 300 kW of margin. The mixed water circuit has 1 MW of margin, which can only be accessed if the electronics in the racks can be operated at higher temperature (by increasing the difference between the water temperature at the rack output compared to the rack input).

04.10.2017

Page 14

A detailed work breakdown structure (WBS) has been developed to understand the needs of the ATLAS Phase-II upgrade projects for support and additional infrastructure as best as possible.

More details about the main cost drivers can be found in Annex 5.

The ATLAS management, supported by the ATLAS Executive and Collaboration Boards, kindly invites the RRB to

- approve the requested 2018 M&O-A and M&O-B budgets, and their sharing by Funding Agency;
- take note of the progress in the ATLAS Phase-I Upgrade projects, and the CORE deliverables projected to be realized in 2017 and 2018;
- endorse Addendum #17 to the Construction MoU about the Phase-II Common Fund, thus allowing to collect signatures and first contributions from the Funding Agencies in 2018.

!! THANK YOU FOR SUPPORTING ATLAS !!

