

ALICE Status

F Antinori

43rd ALICE RRB, 25 October 2017

Contents

- Collaboration news
- News from Point 2
- Computing update
- Physics update
- Upgrades update
- Conclusions

Collaboration news

ALICE

ALICE Institute News

- PINSTECH, Islamabad, Pakistan (associate member, team leader: Sohail Ahmad JANJUA)
- AGH University of Science and Technology, Cracow, Poland (associate member, team leader: Marian BUBAK)
- Santiago de Compostela and CIEMAT, Spain: participation ended in August
- ongoing discussions with several groups (Chile, China, India, Kazakhstan, Malaysia)

Participating Institutes (1992-2017) 178 INSTITUTES – 41 COUNTRIES

Participating Institutes (1992-2017)

Total — Full Members

Associate Members

The ALICE Collaboration

History of the ALICE Experiment:

- 1990-1996 Design
- 1992-2002 R&D
- 2000-2010 Construction
- 2002-2007 Installation
- 2008 -> Commissioning
- 4 TP addenda along the way: 1996 Muon spectrometer 1999 TRD 2006 EMCAL 2007 DCAL
- 2012 Lol for the Upgrade
- 2012-2014 R&D
- 2014-2016 Procurement/Fabrication
- 2016-2017 Integration, precommissioning
- 2018-2019 Installation, commissioning
- 2019-2020 Full deployment of DAQ/HLT

Source: Alice Collaboration data base, October 2017

New appointments

- Editorial Board Co-chair: David Dobrigkeit Chinellato (Campinas, Brazil)
- Deputy Run Coordinator: Kristjan Gulbrandsen (Copenhagen, Danemark)
- Conference Committee member: Lee Barnby (Derby, United Kingdom)
- Conference Committee member: Panos Christakoglou (Nikhef, The Netherlands)
- Junior Representatives: Erin Gauger (Austin, USA), Jeremy Wilkinson (Bologna, Italy)
 PWG Conveners
- Minimum Bias and MC generators: Paolo Bartalini (Wuhan, China)
- Jets: Tatsuya Chujo (Tsukuba, Japan)
- Jets: Leticia Cunqueiro (Oak Ridge National Laboratory, USA)
- Heavy Flavours: Alessandro Grelli (Nikhef, The Netherlands)
- Correlations and Fluctuations: Ilya Selyuzhenkov (GSI, Germany) FA | ALICE RRB | 25 October 2017

News from Point 2

Data taking in 2017

- nominal running conditions: •
 - $\beta^* = 10 \text{ m}$
 - μ = 1-2%, leveled at target lumi ~2.6Hz/µbarn
- rich trigger menu
 - calos, muons, TRD, diffractive, hi-mult, min-bias, ...
- 18 sub-detectors included in data-taking .
- data-taking efficiency >92% •
- on track for statistics goals for 2017
- special data-taking conditions
 - low-B data-taking in the central barrel (done)
 - data-taking at very low- μ (~ 0.1%) (done)
 - including Zero Degree Calorimeters
 - Xe-Xe test (done)
 - pp reference run at 5 TeV (\rightarrow November)

Data taking in 2017

- Xe-Xe at 5.44 TeV
- Solenoid at half B-field (0.2 T)
- Solenoid/Dipole +,+ polarity
- β* used 10 m
- Fill 6294 (9h of set-up and loss maps)
- Fill 6295 (6h of Stable Beam)
 - 2x colliding bunches in IP2 compared to IP1/5/8
 - Initial peak luminosity: 2.5x10²⁵ s⁻¹ cm⁻²
 - Hadronic interaction rate: ~80 Hz
- 97.4% efficiency, 1.7M min-bias events

11

Xenon-Xenon run

Data taking in 2017 Next schedule

4 weeks of 13 TeV high lumi running remain.

Plan to schedule 3 shifts of commissioning of 900 GeV high β^* optics

5 TeV pp reference: 870M events (6.7 days of data-taking, β^* = 10 m)

Computing update

Data taking and processing

- 3.2 PB RAW data collected and replicated
- full calibration and reconstruction of all periods completed
- Improvement in HLT compression algorithm + new TPC gas resulted in reduced RAW pp data size and saved 7PB in tapes

ALICE number of accesses in time X

Total size of the file

- Cleanup of unpopular data on disk
 - 7.5PB removed,

2.794 PB

2.701 PB

286.1 TB 190.7 TB

95.37 TB

- ~3PB (5% of total) remains
- reduced disk requirements in 2018
- revised and lowered request for 2019

FA | ALICE RRB | 25 October 2017

2018 computing request

Api-17						
Resource	Site	2018 request	2019 request	Growth		
CPU [kHS06]	Т0	350	534	34.46%		
	T1	306	501	38.92%		
	T2	438	635	31.02%		
Disk [PB]	Т0	27	33.6	19.64%		
	T1	32.2	39.9	19.30%		
	T2	41	51	19.61%		
Tape [PB]	Т0	55	55	0.00%		
	T1	41	49.5	17.17%		

- Reduction in tape request (reduced event size)
- Reduction in disk request (disk cleanup)
- CPU request reevaluated based on improvements in reconstruction performance

Uct-17						
Resource	Site	2018 request	2019 request	Growth		
CPU [kHS06]	Т0	350	430	18.60%		
	T1	307	375	18.13%		
	T2	398	475	16.21%		
Disk [PB]	Т0	26.2	30.7	14.66%		
	T1	30.5	35.8	14.80%		
	T2	35.1	39.7	11.59%		
Tape [PB]	Т0	49.1	49.1	0.00%		
	T1	40.9	40.9	0.00%		

- Most of the pledged resources for 2017 installed resources on T0 and T1 for 2018 almost fully pledged
- T2 situation improved but still around -20%
- Fulfillment of reduced request, in particular T2 disk, is necessary to allow ALICE continuous operation

Physics update

A Large Ion Collider Experiment

Physics output

- going strong!
 - 192 papers on arXiv
 - several hundred conference presentations each year

Some recent physics results...

FA | ALICE RRB | 25 October 2017

At April RRB...

Identified particle production

textbook-quality Run 2 data!

 \rightarrow QGP hadronisation, collective expansion, freeze-out, ...

ALICE

... now: more and more species

Resonances, hyperons,...

 \rightarrow QGP hadronisation, radial expansion, freeze-out, ...

Radial Flow

"Blast-Wave" fits to hadron spectra

- model of radial expansion mass dependence → kinetic parameters
 - T_{kin}: kinetic freeze-out temperature
 - $-\beta_T$: radial flow velocity
- Run 2 (5.02 TeV)
 - $\sim 2/3$ c (largest β_T ever observed)

 $\langle \mathrm{dN}_{\mathrm{ch}} \, / \, \mathrm{d\eta}_{\mathrm{lab}}
angle_{|\eta_{\mathrm{lab}}| \, < \, 0.5}$

Deuterons ALICE-PUBLIC-2017-006 6<u>×1</u>0⁻³ íQ **ALICE Preliminary** ALICE, p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 2d / (p +] V0A Multiplicity Classes (Pb-side) 1/N_{ev} d²N/(dp_Tdy) (GeV/*c*)⁻¹ ALICE, pp INEL, Vs = 13 TeV **ALICE Preliminary** • ALICE, Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ |y| < 0.5- **L** + + • 10 ALICE, Pb-Pb, $\sqrt{s_{_{
m NN}}}$ = 2.76 TeV (PRC 93 (2015) 024917) 10^{-2} ALICE, pp INEL, Vs = 7 TeV (PRC 93 (2015) 024917) 10^{-3} 10^{3} 10² 10 uterons, Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $\langle dN_{_{
m ch}} / d\eta_{_{
m lab}} \rangle$ 0-5% (x512) 5-10% (x256) $|\eta_{10}| < 0.5$ 10^{-4} 10-20% (x128) 20-30% (x64) ALI-PREL-130492 30-40% (x32) 40-50% (x16) $B_{2} (GeV^{2}/c^{3})$ 10^{-5} • 60-70% (x4) 50-60% (x8) **ALICE Preliminary** 10^{-2} 70-80% (x2) 80-90% (x1) $p_A = 0.75 \text{ GeV}/c$ ---· Individual fit • pp INEL $\sqrt{s} = 13$ TeV 10⁻⁶ INEL normalisation uncertainty: 2.55% 2 3 5 4 6 *p*_{_} (GeV/*c*) 10^{-3} ALI-PREL-130488 ● ALICE, d+d, pp, √s = 7 TeV Coalescence probability decreases as system size grows V0M Multiplicity Classes ALICE, d+d, p-Pb, Vs_{NIN} = 5.02 TeV V0A Multiplicity Classes (Pb-side (+ light nuclei in pp arXiv:1709.08522) ALICE, d, Pb-Pb, $\sqrt{s_{_{
m NN}}}$ = 5.02 TeV + ALICE, d, Pb-Pb, Vs_NN = 2.76 TeV (PRC 93 (2015) 024917) 10^{-4} 10² 10^{3} 10

FA | ALICE RRB | 25 October 2017

ALI-PREL-136474

Hypertriton lifetime

 ${}^{3}_{\Lambda}$ H: pn Λ bound state

Charm: constraining the QGP transport properties

powerful constraint from combination of R_{AA} and v₂
 → sensitivity to charm diffusion coefficient

FA | ALICE RRB | 25 October 2017

Charm: constraining the QGP transport properties

- powerful constraint from combination of R_{AA} and v_2
 - \rightarrow sensitivity to charm diffusion coefficient

The D_s

ALICE-PUBLIC-2017-003

20

15

10

25

ALICE Preliminary

³⁰ 35 4 ρ_τ (GeV/c)

40

60-80% Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

hint of lower suppression for $D_s \rightarrow$ strangeness enhancement? ٠ FA | ALICE RRB | 25 October 2017

A Large Ion Collider Experiment

х

Magnetic fields in Pb-Pb collisions

Hint of this effect observed in ALICE?

ALI-PREL-129681

V. Voronyuk et al, Phys. Rev C83 (2011) 054911

ALI-PREL-129689

Hint of this effect observed in ALICE?

Magnetic fields in Pb-Pb collisions

Strangeness enhancement

- reminder: Pb-Pb-like features in pp, p-Pb
 - indications of collective flow
 - two-particle correlations
 - identified particle spectra
 - strangeness enhancement
 - Nature Physics 13 (2017) 535

Strangeness enhancement

- reminder: Pb-Pb-like features in pp, p-Pb
 - indications of collective flow
 - two-particle correlations
 - identified particle spectra
 - strangeness enhancement
 - Nature Physics 13 (2017) 535
- now: Pb-Pb data at same energy (5 TeV)
 - smooth overlap with pp, p-Pb
- \rightarrow enhancement only dependent on mult'y?
- → underlying mechanism?
- → pp event generators?

Charm in p-Pb: nuclear modification factors

p-Pb/A*pp

no evidence of modifications
 e.g. quenching

FA | ALICE RRB | 25 October 2017

"central" / "peripheral"

similar to charged particles
 → radial flow?

Collective effects for charm in p-Pb? Heavy-flavour electron v₂

azimuthal modulation for HF electrons

A Large Ion Collider Experiment

Collective effects for charm in p-Pb?

Heavy-flavour electron v_2

- azimuthal modulation for HF electrons
- magnitude similar to charged hadrons
 and Pb-Pb

Azimuthal asymmetry for J/ψ?

Correlate J/ψ in muon arm with charged particle in barrel

- p-going direction
- Pb-going direction
- Pb-Pb
- \rightarrow hint of non-zero v₂

pp: multiplicity dependence of particle spectra Ratio to minimum bias (inel > 0)

Multiplicity selection at mid-rapidity

correlation between inclusive multiplicity (low- p_T) and high- p_T particle production

FA J-2 MRIS 2+ oproton geometry

Multiplicity selection at forward rapidity

pp: particle spectra for jetty and isotropic events

- in jetty events:
 - more particles at high p_T , fewer at low p_T
- \rightarrow constrain MPI models
- → connected to p/π enhancement at intermediate p_T ?

pp: proton-proton correlations

• close pp pairs enhanced

close like-sign pairs suppressed

- baryon number conservation?
- not reproduced by PYTHIA tunes, PHOJET
 - \rightarrow new window on baryon production mechanisms in pp

ALI-PREL-132125

Charmed baryons in pp

Update on upgrades

ALICE upgrades

Main physics goals

- study heavy quark interaction in QCD medium
 - $\rightarrow\,$ heavy flavour dynamics and hadronisation at low ${\rm p_T}$
- study charmonium regeneration in QGP

 \rightarrow charmonium down to zero \mathbf{p}_{T}

- chiral symmetry restoration and QGP radiation
 - \rightarrow vector mesons and virtual thermal photons (di-leptons)
- production of nuclei in QGP
 - \rightarrow high-precision measurement

ALICE upgrades

Layout

- New Inner Tracking System (ITS)
 - MAPS: improved resolution, less material, faster readout
- New Muon Forward Tracker (MFT)
 - vertex tracker at forward rapidity
- New TPC Readout Chambers
 - 4-GEM detectors
- New trigger detectors (FIT, AD)
 - + centrality, event plane
- Upgraded read-out for TOF, TRD, MUON, ZDC, EMCal, PHOS, integrated Online-Offline system (O²)
 - record minimum-bias Pb-Pb data at 50 kHz (currently <1 kHz)

ALICE upgrades

Timeline

- LS2:
 - LHC injector upgrades, Pb-Pb rate → 50 kHz (now ~10 kHz)
 - ALICE upgrades
- Run 3 + Run 4:
 - experiments request > 10/nb (ALICE: 10/nb + 3/nb at 0.2 T)
 - in line with latest projections from machine group

FA | ALICE RRB | 25 October 2017

ITS Upgrade

7-layer geometry (23 – 400mm), $|\eta| \le 1.5$) 10 m² active silicon area (12.5 G-pixels) Pixel pitch 28 x 28 μ m² Spatial resolution ~5 μ m Power density < 40mW / cm² Material thickness: ~0.3% / layer (IB) Max particle rate: 100 MHz / cm²

New Muon Forward Tracker

- new Si pixel tracker
 - same technology as ITS
- in front of muon absorber
 2.35 < η < 3.6
- 280 ladders
 - 2 to 5 sensors each
- 928 pixel sensors (0.4 m²)
 - ~ 5% of ITS surface

nolithic Pixel Chip

Production Status	Nr. wafers	Nr. chips
delivered	560	24840

Full production: 1200 wafers

Production proceeds smoothly Throughput ⇔ > 100 wafers/month

➡ Production will continue till Feb 2018

Module and Stave Pre-series

Performance of first full staves (stave-0 and stave-1)

Each half-stave is an independent system (power and readout)

51 Million pixel

Noise figure same as for standalone chip

TPC Upgrade

- Goal: replace existing MWPC-based Readout Chambers and Front-End Electronics in LS2 to allow continuous readout of Pb-Pb collisions at 50 kHz in RUN3 and 4
- Technical solution: 4-layer GEM detectors

Electron microscope photograph of a GEM foil

GEM and Readout Chamber producting

- almost 50% of GEM foils produced in CERN F
- RO Chamber assembly ongoing, first 5 final c
- completion of Readout Chamber production ir

ROC tests at P2

OROC

IROC

- IROC and OROC in cavern at P2 (pp up to 70 Hz/µb)
- 100's hrs stable operation

Front-End Electronics

- New Front-End Electronics with SAMPA ASIC for continuous data readout
- SAMPA + FEC + IROC system test shows very good noise behavior in the lab and at the PS beam

Front-End Electronics

- SAMPA v3
 - delivery at CERN on 19/10
 - ADC: performance improvement
 - Bandgap: performance improvement
 - Digital: single event latchup sensitivity improvement
- SAMPA v4
 - delivery at CERN expected today!
 - In addition to V3, high input rate improvement

O² System

Requirements

- LHC min bias Pb-Pb at 50 kHz 1
- 2. very small signal over background \rightarrow triggering not possible
- 3. support for continuous read-out

New computing system

- read-out the data of all interactions
- compress data intelligently
 - \rightarrow online reconstruction
- common online-offline computing system $\rightarrow 0^2$

O² Software and Firmware Detector read-out

- Performance test with 1 FLP and 2 CRUs each with two channels PCIe Gen3 x 8
- Measured channel throughput
 6.50 6.95 GB/s out of a maximum of 7.8 GB/s
- Total bandwidth of 27 GB/s (20 GB/s is needed for the TPC without data compression)
- First detector readout test with GBT and CRU performed with the ITS Read-out Unit
- Test in progress with the TPC FEC

Throughput as function of superpage size

O² Software Tracking and Data Compression

- TPC tracking
 - HLT TPC tracking code adapted to the O² framework including many improvements
 - Efficiency already equivalent to that of current reconstruction (or better at low p_T)
 - More development under way to improve resolutions, particularly in Pb-Pb
- TPC data compression : target factor ~20 wrt TPC zero-suppressed data
 - Requires good efficiency for secondary tracks
 - Thanks to a better noise suppression and some format optimization the current compression was improved by 40% (5.18 → 7.28).
 - With improved data representation and compression the reduction factor is now at 9.1
 - The remaining factor ~2 is being pursued with two approaches to discard clusters part of unusable tracks

Conclusions

- Run 2 data collection proceeds smoothly
- physics harvest continues!
 - new insights on QGP properties
 - expansion, hadronisation
 - response to initial geometry
 - transport of heavy quarks
 - response to magnetic field
 - new insights on collective effects in small systems
 - systematics of strangeness enhancement
 - indications of collective effects for D, J/ψ
 - new measurements in pp collisions
 - multiplicity and event-shape dependence of p_T spectra (\rightarrow MPIs)
 - proton pair correlations
 - heavy flavour production
- all upgrade projects have entered construction phase
 - proceeding according to plans
 - little more than one year to go to LS2!!!

