Manage memory efficiently in your C++ code with
smart pointers

Salvatore Aiola

Yale University

ALICE Analysis Tutorial Week
CERN, November 3rd, 2017

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 1/23

Outline

@ Introduction
e Why a raw pointer is hard to love
© Smart Pointers

0 Conclusions

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 2/23

Introduction

Introduction

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 3/23

Introduction

What is a Pointer?

name of storage

. content
variable address

ggg? A pointer is an object whose value
— “points to” another value stored
0003 somewhere else in memory
0004 @ it contains a memory address
@ dereferencing: obtaining the
e value stored at the pointed
1005 location
> @ very flexible and powerful tool
1009
1010

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 4/23

Introduction

Using a Pointer

/%« Defining a pointer =x/
intx a; // declares a pointer that can point to an integer value

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 5/23

Introduction

Using a Pointer

/%« Defining a pointer =x/
intx a; // declares a pointer that can point to an integer value
//DANGER: the pointer points to a random memory portion!

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 5/23

Introduction

Using a Pointer

/%« Defining a pointer =x/
intx a; // declares a pointer that can point to an integer value
//DANGER: the pointer points to a random memory portion!

intx b = nullptr; // OK, pointer is initialised to a null memory address

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 5/23

Introduction

Using a Pointer

/%« Defining a pointer =x/

intx a; // declares a pointer that can point to an integer value
//DANGER: the pointer points to a random memory portion!

intx b = nullptr; // OK, pointer is initialised to a null memory address

intx ¢ = new int; // allocate memory for an integer value in the heap
//and assign its memory address to this pointer

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 5/23

Introduction

Using a Pointer

/%« Defining a pointer =x/

intx a; // declares a pointer that can point to an integer value
//DANGER: the pointer points to a random memory portion!

intx b = nullptr; // OK, pointer is initialised to a null memory address

intx ¢ = new int; // allocate memory for an integer value in the heap
//and assign its memory address to this pointer

int¥«x d = &; // this pointer points to a pointer to an integer value

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 5/23

Using a Pointer

/%« Defining a pointer =x/

intx a; // declares a pointer that can point to an integer value
//DANGER: the pointer points to a random memory portion!

intx b = nullptr; // OK, pointer is initialised to a null memory address

intx ¢ = new int; // allocate memory for an integer value in the heap
//and assign its memory address to this pointer

int¥«x d = &; // this pointer points to a pointer to an integer value

MyObjectx e = new MyObject(); // allocate memory for MyObject
// and assign its memory address to the pointer e

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 5/23

Introduction

Using a Pointer

/%« Defining a pointer =x/

intx a; // declares a pointer that can point to an integer value
//DANGER: the pointer points to a random memory portion!

intx b = nullptr; // OK, pointer is initialised to a null memory address

intx ¢ = new int; // allocate memory for an integer value in the heap
//and assign its memory address to this pointer

int¥«x d = &; // this pointer points to a pointer to an integer value

MyObjectx e = new MyObject(); // allocate memory for MyObject
// and assign its memory address to the pointer e

/+ Using a pointer =x/

int f = xc; // dereferencing a pointer and assigning the pointed
// value to another integer variable

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 5/23

Introduction

Using a Pointer

/%« Defining a pointer =x/
intx a; // declares a pointer that can point to an integer value
//DANGER: the pointer points to a random memory portion!

intx b = nullptr; // OK, pointer is initialised to a null memory address

intx ¢ = new int; // allocate memory for an integer value in the heap
//and assign its memory address to this pointer

int¥«x d = &; // this pointer points to a pointer to an integer value

MyObjectx e = new MyObject(); // allocate memory for MyObject
// and assign its memory address to the pointer e

/+ Using a pointer =x/
int f = xc; // dereferencing a pointer and assigning the pointed
// value to another integer variable

e—>DoSomething (); // dereferencing a pointer and calling

// the method DoSomething() of the instance of MyObject
// pointed by e

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 5/23

Why a raw pointer is hard to love

Why a raw pointer is hard to love

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 6/23

Why a raw pointer is hard to love

Memory leak

void MyAnalysisTask :: UserExec ()

TLorentzVectorx v = nullptr;
for (int i = 0; i < InputEvent()—>GetNumberOfTracks (); i++) {
AliVTrackx track = InputEvent()—>GetTrack(i);
if (!track) continue;
v = new TLorentzVector(track—Px(),
track —>Py (), track—Pz(), track—M());

// my analysis here

std ::cout << v—>Pt() << std::endl;

1
delete v;

}

What is the problem with this code?

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017

7/23

Why a raw pointer is hard to love

Array or single value?

@ A pointer can point to a single value or to an array — no way to
infer it from its declaration

@ Different syntax to destroy (= deallocate, free) the pointed object
for arrays and single objects

AliVTrack* FilterTracks ();

void UserExec ()

{
TLorentzVector xvect = new TLorentzVector(0,0,0,0);
double =xtrackPts = new double[100];
AliVTrack xreturnValue = FilterTracks ();

/! here use the pointers
delete vect;

delete[] trackPts;
delete returnValue; // or should | use delete[] ?7?

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 8/23

Why a raw pointer is hard to love

Double deletes

@ Each memory allocation should match a corresponding
deallocation

@ Difficult to keep track of all memory allocations/deallocations in a

large project

@ Ownership of the pointed memory is ambiguous: multiple deletes

of the same object may occur

AliVTrack* FilterTracks ();
void AnalyzeTracks (AliVTrackx tracks);

void MyAnalysisTask :: UserExec ()
{ AliVTrackx tracks = FilterTracks ();
AnalyzeTracks (tracks);
delete[] tracks; // should | actually delete it??

/lor was it already deleted by AnalyzeTracks?

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017

9/23

Smart Pointers

Smart Pointers

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 10/23

Smart Pointers

Smart Pointers

@ Clear (shared or exclusive) ownership of the pointed object

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 11/23

Smart Pointers

Smart Pointers

@ Clear (shared or exclusive) ownership of the pointed object

@ Automatic garbage collection: memory is deallocated when the

last pointer goes out of scope

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 11/23

Smart Pointers

Smart Pointers

@ Clear (shared or exclusive) ownership of the pointed object

@ Automatic garbage collection: memory is deallocated when the

last pointer goes out of scope

@ Available since C++11

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 11/23

Smart Pointers

Exclusive-Ownership Pointers: unique_ptr

@ Automatic garbage collection with no additional CPU or memory

overhead (i.e. it uses the same resources as a raw pointer)

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 12/23

Smart Pointers

Exclusive-Ownership Pointers: unique_ptr

@ Automatic garbage collection with no additional CPU or memory

overhead (i.e. it uses the same resources as a raw pointer)

@ unique_ptr owns the object it points

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 12/23

Smart Pointers

Exclusive-Ownership Pointers: unique_ptr

@ Automatic garbage collection with no additional CPU or memory

overhead (i.e. it uses the same resources as a raw pointer)
@ unique_ptr owns the object it points

@ Memory automatically released when unique_ptr goes out of

scope or when its reset (T» ptr) method is called

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 12/23

Smart Pointers

Exclusive-Ownership Pointers: unique_ptr

@ Automatic garbage collection with no additional CPU or memory

overhead (i.e. it uses the same resources as a raw pointer)
@ unique_ptr owns the object it points

@ Memory automatically released when unique_ptr goes out of

scope or when its reset (T» ptr) method is called

@ Only one unique_ptr can point to the same memory address

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 12/23

Smart Pointers

unique_ptr example / 1

void MyFunction () {
std ::unique_ptr<TLorentzVector> vector(new TLorentzVector(0,0,0,0));
std ::unique_ptr<TLorentzVector> vector2 (new TLorentzVector(0,0,0,0));
// use vector and vector2

// dereferencing unique_ptr works exactly as a raw pointer
std ::cout << vector—Pt() << std::endl;

/1 the line below does not compile!
/' vector = vector2;
// cannot assign the same address to two unique_ptr instances

vector.swap(vector2); // however | can swap the memory addresses

// this also releases the memory previously pointed by vector2
vector2.reset(new TLorentzVector(0,0,0,0));

// objects pointed by vector and vector2 are deleted here

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 13/23

Smart Pointers

unique_ptr example /2

void MyAnalysisTask :: UserExec ()

{
for (int i = 0; i < InputEvent()—>GetNumberOfTracks (); i++) {
AliVTrackx track = InputEvent()—>GetTrack(i);
if (!track) continue;
std ::unique_ptr<TLorentzVector> v(new TLorentzVector(track—Px(),
track —>Py (), track—Pz(), track—M()));
// my analysis here
std ::cout << v—>Pt() << std::endl;
// no need to delete
// v is automatically deallocated after each for loop
}
}

No memory leak here! :)

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 14/23

Smart Pointers

Shared-Ownership Pointers: shared_ptr

@ Automatic garbage collection with some CPU and memory
overhead

std: :shared_EcriT>

: PtrtoT %1 7771'(3[)}&:7 j

| Ptrto Control Block Control Block
Reference Count
Weak Count

Other Data
(e.g., custom deleter,
allocator, etc.)

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 15/23

Smart Pointers

Shared-Ownership Pointers: shared_ptr

@ Automatic garbage collection with some CPU and memory
overhead

@ The pointed object is collectively owned by one or more
shared_ptr instances

L PtrtoT %{ 77”}'6[)]6(-7 j

| PtrtoControl Block Control Block
Reference Count
Weak Count

Other Data
(e.g., custom deleter,
allocator, etc.)

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 15/23

Shared-Ownership Pointers: shared_ptr

@ Automatic garbage collection with some CPU and memory
overhead

@ The pointed object is collectively owned by one or more
shared_ptr instances

@ Memory automatically released the last shared_ptr goes out of
scope or when it is re-assigned

PtrtoT %{ 77771’ (A)I)je(.r j

=
| Ptrto Control Block Control Block
Reference Count

Weak Count

Other Data
(e.g., custom deleter,
allocator, etc.)

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 15/23

shared_ptr example / 1

void MyFunction () {
std ::shared_ptr<TLorentzVector> vector(new TLorentzVector(0,0,0,0));
std ::shared_ptr<TLorentzVector> vector2(new TLorentzVector(0,0,0,0));

// dereferencing shared_ptr works exactly as a raw pointer
std ::cout << vector—Pt() << std::endl;

// assignment is allowed between shared_ptr instances

vector = vector2;

// the object previously pointed by vector is deleted!

/1 vector and vector2 now share the ownership of the same object

/! object pointed by both vector and vector2 is deleted here

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 16/23

shared_ptr example /2

class MyClass {
public:

MyClass () ;

private:

b

void MyFunction ();
std :: shared_ptr<TLorentzVector> fVector;

void MyClass:: MyFunction () {
std ::shared_ptr<TLorentzVector> vector(new TLorentzVector(0,0,0,0));

/1

assignment is allowed between shared_ptr instances

fVector = vector;

/1
/1

the object previously pointed by fVector (if any) is deleted
vector and fVector now share the ownership of the same object

here vector goes out—of—scope

however fVector is a class member so the object is not deleted!
it will be deleted automatically when this instance of the class
is deleted (and therefore fVector goes out—of—scope) :)

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 17/23

Smart Pointers

Some word of caution on shared_ptr

void MyClass:: MyFunction () {
auto ptr = new TLorentzVector(0,0,0,0);

std ::shared_ptr<TLorentzVector> v1 (ptr);
std ::shared_ptr<TLorentzVector> v2 (ptr);

// a double delete occurs here!

What is the problem with the code above?

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017

18/23

Smart Pointers

Some word of caution on shared_ptr

void MyFunction () {
auto ptr = new TLorentzVector(0,0,0,0);

std ::shared_ptr<TLorentzVector> v1 (ptr);
std ::shared_ptr<TLorentzVector> v2 (ptr);

// a double delete occurs here!

@ v1 does not know about v2 and viceversa!

@ Two control blocks have been created for the same pointed objects

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017

19/23

Smart Pointers

Some word of caution on shared_ptr

void MyFunction () {
std ::shared_ptr<TLorentzVector> v1 (new TLorentzVector(0,0,0,0));
std ::shared_ptr<TLorentzVector> v2 (v1);

/! this is fine!

@ Solution: use raw pointers only when absolutely needed (if at all)

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 20/23

Usage Notes for ALICE Software

@ Can be used in the implementation files of AliPhysics (*.cxx files)

) (therefore
cannot be used as non-transient class members)

#if !(defined(__CINT__) || defined(__MAKECINT_))
// your C++11 code goes here
#endif

@ Cannot be used anywhere in AliRoot

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 21/23

Conclusions

Conclusions

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 22/23

Conclusions

Final remarks

@ When the extra-flexibility of a pointer is not needed, do not use it
@ Alternative to pointers: arguments by reference (not covered here)
@ Avoid raw pointers whenever possible!

@ Smart pointers (unique_ptr and shared_ptr) should cover
most use cases and provide a much more robust and safe
memory management

References
Effective modern C++, Scott Meyers (O’'Reilly 2015)
http://en.cppreference.com/

Salvatore Aiola (Yale University) Memory management in C++ Nov. 3rd, 2017 23/23

http://en.cppreference.com/

	Introduction
	Why a raw pointer is hard to love
	Smart Pointers
	Conclusions

