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Introduction Charged particles
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lllustration:

Hits (in transverse view) created in a tracking detector with constant magnetic field without interaction with the detector material (left), A schematic view of a particle
moving in a constant magnetic field (right).



Introduction Charged particles In the detector

Particle trajectories can not be directly measured and have to be reconstructed from localisations.
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lllustration:

Longitudinal (left) and transverse (right) schematic of charged particles in a test detector.



Introduction [racking Detectors

Tracking detectors are innermost detection devices,

closest to the beam interaction region:‘_

- measure trajectory and origin of
- charged particles e

track reconstruction:
trajectory measurement gives '
access to kinematic Information

of the charged particle: p
origin, momentum, charge

vertex reconstruction: -
assoclation of particles to an orgin alows o
for grouping of particles and subseguent

event reconstruction

lllustration:
Transverse (right) schematic of charged particles in a test detector.




Introduction [racking detectors

Typical setup of a Tracking detector
- Very precise Innermaost tracker: silicon pixel detector
- several additional detection layers, e.qg. silicon strip detectors
- embedded In a magnetic field for particle bending (momentum measurement)
- hermetic coverage, nignly efficient, radiation tolerant
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lllustration:
Longitudinal view of a schematic Tracking detector used for the Tracking ML challenge with a central barrel and endcap system.



Introduction [racking detectors - pixel detector

position: (X, y, 2)
error: (ex, ey, ez)
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lllustration:
Longitudinal view of a schematic Tracking detector with a central barrel and endcap system. Zoom into the pixel system build from planar sensors.



Introduction [racking detectors - pixel detector

particle direction information

Multiple cells hit can be used in cluster shape

(@ mgrease measurement direction: (theta, phi)

OrecCision ~_ error: (etheta, ephi)
\\~

[ (cellID, c. charge)]

4 ,‘—"' "

track

Measurement precision of a few micrometers.
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lllustrations:
A particle passing through a pixel silicon sensor: it provides a track localisation and some information about the track angle.
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lllustrations:
A particle passing through a pixel silicon sensor: it provides a track localisation and some information about the track angle.



Introduction [racking detectors - pixel detector

particle direction information

MU|J[|p|e cells hit can be used in cluster shape

(@ mgrease measurement direction: (theta, phi)

OrecCision ~_ error: (etheta, ephi)

\\
N
the binary approach: | i-th pixel position \\
measurement | m |= N .;N l; :
[ (cellID, c. charge)] = \
\ track

Measurement precision of a few micrometers.
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lllustrations:
A particle passing through a pixel silicon sensor: it provides a track localisation and some information about the track angle.



Introduction [racking detectors - pixel detector

particle direction information

Multiple cells hit can be used in cluster shape

(@ mgrease measurement direction: (theta, phi)

OrecCision ~_ error: (etheta, ephi)

\\\\\\
the charge-weighted approach : ‘\\\
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[ (cellID, c. charge)] ' charge collected in cell |
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lllustrations:
A particle passing through a pixel silicon sensor: it provides a track localisation and some information about the track angle.



Introduction [racking detectors - strip detector

Strip detector Is less precise
- often bullt with a doupnle module
structure to achieve a 30D measurement

Measurement precision of a few tens of micrometers.
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lllustration:
Longitudinal view of a schematic Tracking detector with a central barrel and endcap system.



Introduction [racking detectors

Detector material is the main source of process noise
- despite significant efforts to buld the most lignt-weignt detectors

Ideal real

Particles interact with the detector material
- INntroduces different types and levels of disturbance (process noise)



Multiple Coulomb Scattering

Charged particle undergoes multiple coulomb scattering when

passing through material
- net deflection: var@) =0

- almost (Gaussian process Noise (except for single large angle scattering)
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inverse proportional to momentum, i.e. low momentum particles scatter more !

lllustration:
Passage of a charged particle through dense matter resulting in a significant deflection of the particle direction.
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Multiple Coulomb Scattering tifects

Passage of particle through detector material
- deflects the inttial particle direction
- 18 Inverse proportional to the particle momentum
- adds aimost gaussian process noise to the measurement
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Toy Model:
Scattering emulation by passage through ten layers of material resulting in a core gaussian distribution.
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Multiple Coulomb Scattering =fiects

Passage of particle through detector material
- deflects the inttial particle direction
- 18 Inverse proportional to the particle momentum
- adds amost gaussian process noise to the measurement
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Toy Model:
Scattering emulation by passage through ten layers of material resulting in a core gaussian distribution.




Multiple Coulomb Scattering =fiects

Passage of particle through detector material
- deflects the inttial particle direction
- 18 Inverse proportional to the particle momentum
- adds amost gaussian process noise to the measurement
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Toy Model:
Scattering emulation by passage through ten layers of material resulting in a core gaussian distribution.



Multiple Coulomb Scattering =fiects

Passage of particle through detector material
- deflects the inttial particle direction
- 18 Inverse proportional to the particle momentum
- adds amost gaussian process noise to the measurement

10 toy detector with material deflection

gaussian distribution,

predicted by central limit theorem
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Toy Model:
Scattering emulation by passage through ten layers of material resulting in a core gaussian distribution.



Multiple Coulomb Scattering

—ffects

Passage of particle through detector material

- deflects the inttial particle direction

- 18 Inverse proportional to the particle momentum
- adds amost gaussian process noise to the measurement

toy detector with material
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Toy Model:
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Scattering emulation by passage through ten layers of material resulting in a core gaussian distribution.
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Energy loss =fects

lonisation

primary ionisation +
secondary jonisation

~ 3 X primary ionisation

Bremsstrahlung

5 o ZM 2me[*y?E! 2, E’2
(dE/daj)lO = a 2T N A2 A5 In 2(Z) 2637 + 1/4 J
N, = | 6.023-10%, Avogadro’s number
Z, A atomic number and weight of the traversed medium
m, Me rest masses of the particle and the electron
B = | p/E, where p is the particle momentum
v =| E/m
Ae = | 3.8616- 107! cm is the Compton wavelength of the electron
I(Z) the mean ionisation potential of the medium,
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Energy loss =fects

lonisation

/ primary ionisation +
secondary ionisation

~ 3 X primary ionisation

Bremsstrahlung
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Hadronic interactions —ficcis

Vast majority of charged particles from p-p interactions are hadrons
- those interact with the nuclel of the detector material
- usually leads to the destruction of the particle and is the main
source of Inefficiency In track reconstruction

Nuclear interactions

- there are many different processes that

can happen in hadron-nucleus interactions
/v - resulting shower has hadronic, but also EM
[\
"N

2 - nuclear interaction length defined as the
mean path length Ao by which the number of

shower components

V.
/\

charged particles is traversing through matter
is reduced by 1/e

14



Track reconstruction &t | HC SC]E NCE

IT WORKS, BITCHES.
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Figure:
ATLAS pixel model as described in simulation (left), tomography from vertices built from tracks for hadronic interactions (right)
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Introduction —nysics

The reason for the data race ...

1010

Figure:

Standard Model cross sections measured with the ATLAS experiment and compared to theoretical predictions, July 2017
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Introduction —nysics

Maximise (re)search potential by maximise total number of collisions
- fitter (trigger) "interesting” events
- Increase the number of collisions per beam crossing: event plle-up

Event pile-up
- when proton bunches collide muttiple p-p Interactions take place
- most of them are "uninteresting” p-p interactions, hoping for one interesting event

beam A beam B
detector

e

multiple p-p interaction:
pile-up |
lllustration:

Simplified illustration of pile-up in a detector by colliding bunches of protons.
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Introduction —nysics

i<

Vast majority of interaction

are “uninteresting”
- yet to understand the event
we spend a lot of time In
JUnderstanding them

Majority of particles have

low/mid momentum
- has conseguences on the
Nteraction with detector

Plots:
Kinematic parameters of charged particles from p-p interactions as simulated with
the PYTHIA8 generator.
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Introduction ~hysics

il

Vast majority of interaction

are “uninteresting”
- yet to understand the event
we spend a lot of time In
JUnderstanding them

Majority of particles have

low/mid momentum
- has conseguences on the
Nteraction with detector

Plots:
Kinematic parameters of charged particles from p-p interactions as simulated with
the PYTHIA8 generator.
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Introduction Charged particles
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Introduction Cnarged particles
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Investigation File-up

1 p-p collision
LHC start-up 2009
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Event pile-up has follows a
beam profile around the interaction -
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Figures:
Tracking detector (left top), longitudinal view of tracks emerging from one vertex (right top), true and measured longitudinal track origin (right), illustration of
beam profile (left bottom),
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Investigation Fle-up

5 p-p collisions
LHC early Run-1 2010
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Longitudinal view of tracks emerging from one vertex (top), true (middle) and measured longitudinal track origin (bottom), for 5 proton-proton collisions (left),

and 40 proton-proton collisions (right).
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Investigation File-up
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Investigation Fle-up
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Longitudinal view of tracks emerging from one vertex (top), true (middle) and measured longitudinal track origin (bottom), for 200 proton-proton collisions
(left), and 1000 proton-proton collisions (right).
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Track reconstruction at LHC
wWith nign particle multiplicities

SCIENCE

IT WORKS, BITCHES.

Figures:
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Hits on track statistics in the Pixel and strip (SCT) detector of ATLAS, comparing low multiplicity and high multiplicity event classes.



Track reconstruction CHU consumption

[rack reconstruction is a combinatorial problem
- naturally dominates the reconstruction time of hadron colliders
- LHC experiments have massively invested into code/SW optimistion
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Track reconstruction =xtrapolation HL-[.HC
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Track reconstruction
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Track finding Sasics

Starting from measurements (with given accuracy) on detector layers
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lllustration: /
Hits created by several particles in a simplified tracking detector, longitudinal view (left) and transverse view (right). /
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Track finding patiern recognition metnods

N

lllustration:
Hits created by several particles in a simplified tracking detector, transverse view.
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Track finding a clustering problem

This is a classical clustering/unsupervised learning problem
- find sets of hits that belong together

@)
. O
what defines ®
this relationship 7 o ©
@)

@)

O
@)
@)
O (@)
@ o ] 1 o

lllustration:
Hits created by several particles in a simplified tracking detector, transverse view.
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SCALE 30 INCHES TO A MILE,

lllustration:
Parts of the map of the 1854 cholera outbreak in London’s Soho district by Dr. John Snow.
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a classical clustering problem
- find sets of hits that belong together

VWhat defines a belonging
| ‘)
2% relation .
2~ - simple solution here:
Sr ”cl\ust@rimg oy euclidian distance’
- Af Z ([distance measure)
— > y >
- 4
/%é/%\\\
> :
&% L\ N\ Example: k-means algorithm
e® % : k
. é . 2 .
argmmz Z |lx — ;|| = argmmz |S;| Var S;
S =1 xeS; S =1

A ... infected water pump (highly correlated with cluster centers)

lllustration:
Detail of the map of the 1854 cholera outbreak in London’s Soho district by Dr. John Snow.
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Track finding a clustering problem

This Is a classical clustering problem

- find sets of hits that belong together need some
domain knowledge
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L . another distance measure
euclidian distance measure

https://fusiontables.google.com/DataSource?docid=1HsIb r4gYYmlz8y UE1h-X8yUtAYW2INy99BR c#map:id=3 33



https://fusiontables.google.com/DataSource?docid=1HsIb_r4gYYmIz8y_UE1h-X8yUtAYW2INy99BR_c#map:id=3

Global pattern recognition Conformal mapping

Conformal mapping : Hough transform

- transform your track hits from the x, y space y
INtoO a more appropriate space

- let’s assume that particles come from
the interaction region + solve in the
transverse direction

q = (d07 <0y ¢7 6)7 Q/p)

lllustration:
Hits created by one particles in a simplified tracking detector, transverse view.
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Global pattern recognition Conformal mapping

Conformal mapping : Hough transform

- transform your track hits from the x, y space y
INtoO a more appropriate space

- let’s assume that particles come from
the interaction region + solve in the
transverse direction

— (d07 20 ¢7 6)7 Q/p)

v

= (¢, %0, 9, 4, C]/Z?)

lllustration:
Hits created by one particles in a simplified tracking detector, transverse view.




Conformal mapping techniques [0y example
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phi ... emission angle in transverse direction at origin
rho ... radius of the helix in transverse plane

lllustration:
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: perfect solution in the hough space.
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Conformal mapping techniques [0y example
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Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses..



Conformal mapping techniques [0y example
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A common solution compatible for all hits in (x,y) space

lllustration:

Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.
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ML clustering/unsupervised leaming

here is our
domain knowledge to inject !

1.0 \
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X phi

A  clusters in Hough space

lllustration:
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.
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ML clustering/unsupervised leaming
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Illustration:

0.2

0.4

0.6

0.8

1.0

What defines a belonging

relation 7/
- DOSSIble solution here:
distance measure as distance
to the assumed solution

< > < >

- additional domain knowledge:
WO Nits on one module
are not aloweo

Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.
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Conformal mapping techniques [0y example

Optimal: no noise & analytical mapping
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A  common (=true) solution compatible for all hits in (x,y) space

lllustration:
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.



Trajectories [Viagnetic Tield maps
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lllustrations:
Manget system of the CMS (top) and ATLAS (bottom) experiment.



Trajectories Viagnetic field maps

Difference between homogenous and ATLAS magnetic field
- middle layer of detector: measurement accuracy 0.05 mm, difference O(1) mm
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Plots:
Difference in transverse (top) and longitudinal (bottom) extrapolation between a perfect helical and the actual ATLAS solenoidal magnetic field.
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Conformal mapping techniques [0y example

Gaussian random position smearing of 0.01 units in tangential direction

1.0 T T T T 1.40

gf
&
1.35| &
0.8 | £
1.30] &
06l | 125/ |
(@]
- 2 120} |
0.4+ 1 115 |
1.10} |
0.2 |
1.05| |
0.0 ' ' ' 1.00
0.0 0.2 0.4 0.6 0.8 1.0 0.65 0.85
X

A true solution of the particle emission angle and bending radius

lllustration:
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.
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ML clustering/unsupervised leaming

1.0 : . l .
———_ The assumed solution can
0sl P _ e subject to modification
i - May differ for different suosets
0.6 | T ,é'"(c) _ of in the cluster
R N - may be updated with more
ol ,""'n(b) | Nnformation added to the cluster
e “ | [as for any clustering algorithm)
@ \ ] Clustering with adaptive distance
N\ | | measure
0.0 L~ . - , ,
0.0 0.2 0.4 0.6 0.8 1.0
X
k k
argminz Z Ix — o, ||* = argminz |S;| Var S;
S =1 xeS; S =1
lllustration:

Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.
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ML clustering/unsupervised leaming

Cluster algorithm with agdaptive distance measure
- distance to current track hypothesis (= cluster center iIn mapping space)

calculated:
transverse plane (circle)
lonagitudinal plane (line)

- ® - cosine

—e— adaptv0 5
—e— adaptv0 6
—e— adaptvO0 7

0.85

0.80

Score
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- -
~ -
~o

0.70
40 50 60 70 80 90 100
nb particles

Plot:
Improvement over cosine distance measure with adaptive distance clustering, courtesy of S. Amrouche.
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Conformal mapping techniques [0y example

1 particle, no smearing applied.
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A common/true solution of the particle emission angle and bending radius

lllustration:

Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.
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Conformal mapping techniques [0y example

6 particles, no smearing applied.

A common/true solutions of the particles emission angles and bending radii

lllustration:
Hits created by six particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.
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Conformal mapping techniques [0y example

6 particles, smearing applied.

1.0 . . . .

0.8

| g

A true solutions of the particles emission angles and bending radii

lllustration:

Hits created by six particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.
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Track seeding and following =asics

Start of many track finding algorithms is the building of track seeds
groups of 2 or 3 measurements that are compatible with a crude track hypothesis

seeds are used to build roads to find track candidates
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Track seeding and following =asics

Start of many track finding algorithms is the building of track seeds
groups of 2 or 3 measurements that are compatible with a crude track hypothesis

seeds are used to build roads to find track candidates

Ar

loose requirement
on interaction region
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Track following combinatorial Titer

Dense environments create problems for the progressive filter

there may not always be one obvious path to be followed:
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Track fitting parameter estimation

At the end we are only interested in the track parameters.

51



Track fitting parameter estimation

At the end we are only interested in the track parameters.

/7




Track fitting parameter estimation

At the end we are only interested in the track parameters.

/7




Track fitting parameter estimation

At the end we are only interested in the track parameters.

7
\
A S
\
T \\\\
< SN
ST N\




Track fitting parameter estimation

At the end we are only interested in the track parameters.
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Track fitting olobal least squares 1t
» a classical least squares estimator problem !

2 T -1 .
X = EAmk Gy Am, wih  Amy=m, -d, (q ) and G, the covariance of
k

dr Including transport of q to measurement layer k

and mapping function —

di = hy °fk|k—1 ° szu Of1|0 ‘




Track fitting olobal least squares 1t

» a classical least squares estimator problem !

X = EAkaGI_;Amk with — Amy =m, —d, (q ) and Gy the covariance of m
d inoludikng transport of q to measurement layer &
and mapping function — )
di = hif S0 o fap oo ‘ \
inearise the problem, starting from an initial state q, — /"'
dk(q0+6q)sdk(q0)+Dk.6q \z‘,\'\
with Jacobian D) = HIJFk|k—1 e F2|1F1|0 ‘ \ ::',;'
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Track fitting olobal least squares 1t

» a classical least squares estimator problem !

X "= EAkaGl_flAmk with — Amy, =m, —d, (Q) and Gy, the covariance of my
dk includikng transport of q to measurement layer k
and mapping function — )
di = hif S0 o fap oo ‘ \
inearise the problem, starting from an initial state (, — /"'
dk(q0+(5q)sdk(q0)+Dk.6q \g’&
with Jacobian D)} = H}JFch_l e F2|1F1|0 ‘ \ :::;,

2 A
find the global minimum: Ix =| 0 \\/" \

aq ,/ \

! qﬂ,;’f/ \

aq=(2DzG:Dk) S DG (m-dyay) | A
k k

-1
C= (ED,Z G;Dk)
k
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Track fitting <alman Titering

offers an alternative solution to the large matrix inversion
- Initialy aeveloped by | Kaman to track missiles
- for HEP pioneered by Bllloir and RH. Fruehwirth

performs a progressive way of least square

estimation T
- equivalent to a y2 fit (if run with a smoother) ~.
- start with transport of track parameters \ ~
(@and covariances) to measurement surface, \
create predicted parameters (“predicted state”) ’\
- combine/update predicted parameters with \\
to updated parameters \ \

(“filtered state”)

A
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Track fitting Kalman fiitering
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Track fitting Kalman filter expressed In matns

let's assume the k-th filter step
- propeagate parameters and covariances rom k-1 10 k adding noise Ok

qr|k-1 :fk|k—1(qk—1|k—1)

Ciik-1= Fk|k—1Ck—1|k—1Fz|k_1 + Oy —
- Update the prediction with
9 O ~.
Gk = Grlk-1 + Killmy —hilqii-1) ] \ ~
Cippe=U - KiH ) Cpp o \
with gain matrix Kx . \ \
K, = Ck|k_1HE+ H/CH)™ > \
measurement covariances \ \ \
k
run the smoother from k+1 10 k \‘/
k-1
Qiln = Gklk T Ak(qk+1|n ~ qk+1|k) / \

Cipn=Cips = Ar(Crorii — Cror)As

with smoother gain matrix Ax. Ay = Ck|sz+1| (C k+1|k)_1
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Track fitting | east souares estimator

Global y? fitter and Kalman filter are least squares estimators that rely
ON gaussian errors:

G}, the covariance of measurement my

(. the noise addition due to material effects (Kalman filter)

E(SHZ,TQi‘l(SHZ, x? contribution from scattering angles (y? fitter)
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Track fitting | east souares estimator

Global y? fitter and Kalman filter are least squares estimators that rely
ON gaussian errors:

G}, the covariance of measurement my

(. the noise addition due to material effects (Kalman filter)

E(S@iTQi‘léﬁi x? contribution from scattering angles (y? fitter)

neither of them are!

250 charge weighted deflection

200

150+

100+

50+
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Track fitting Bremsstraniung tall for electrons

Kalman filter formalism offers a very elegant solution to this problem

material
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Track fitting Bremsstraniung tall for electrons

Kalman filter formalism offers a very elegant solution to this problem

- fork the Kalman filter at the material layer
INnto multiple components with
and propagate them individually

material
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modeled with 6 gaussians ’
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Track fitting Bremsstraniung tall for electrons

Kalman filter formalism offers a very elegant solution to this problem

- modeling of non-gaussian noise
through multivariant (gaussian) approximation

- fork the Kalman filter at the material layer
INnto multiple components with
and propagate them individually

material

(0)
modeled with 6 gaussians ’
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2

)

Track fitting clectron fitting / non-gaussian noise

Electron classification is an obvious playground for ML
- PID is a standard field for NNs/BD 1s

(Electron) track fitting 7
- obviously ML can be used to fit a non-linear system
- the Tt function has to make sense, thoughn, It has to behave like an electron

|dea is not to find the function that fits my measurements best !

| | 5 T ]
Noisy Dat
- — Approximated
2 Original
10° g 3 4 - ’
= ] o
10 = 3 .
- J - . .‘..;
y 2
1
ik /- %
§ 4 ; Y W
- v L o o/
107 - -~ - /- X 7
1 O-d E=— llllllllllllllllllllll L L l_=. _1 l l l l
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 0 20 40 60 80 100
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2

Kalman Filter Is per se a linear dynamical system
- the GSF Is a multivariate, but stil inear dynamical system
- xtended Kalman fiiter, .9, Is an extension with a non-linear transition
- Idea; using NN to descrioe non-linear transition function: Deep Kaman Hiter

- J

actions
— >
transition
states )
. ) 21 ~ N (ko3 Xo)
X \ S Pl 20~ N (Ga (21,1, ), Sp(zi—1, w1, Ay))
AN \\ /l // /// Tt r~ H(FH(Zt))
observables @ NN @ o @
> \ \ / / '/'/'

~ \ Va -

q4(Z | Z, )

Optimize jointly over generative model
and variational approximation and learning via stochastic back-progation.

See:
Rahul G. Krishnan Uri Shalit David Sontag , arXiv:1511.05121v2
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Track ranking \/V\nat Is a good track

Some of the characteristics can only be checked after all track
candidates are found

good track not so good track

many compatible
hits

completeness o

uniqueness s ‘

low 2/ndf ’

small impact / \ X
parameter e 3 \
(for primaries)

clusters are compatible +




Track ranking \/V\nat Is a good track

Some of the characteristics can only be checked after all track
candidates are found

good track not so good track

many compatible
hits

completeness o

uniqueness s ‘

low y2/ndf ] ’

small impact / \ b
parameter e 3 \
(for primaries)

clusters are compatible +

give scores and rank the tracks! /




Track ranking A periect track

There is no unigue truth matching to define a found track
we use truth matching per hits

. truth track
strip detector
4 pixel hits, 4 strip hits created

4 pixel hits, 4 strip hits found and assigned

you can'’t do better,
score = 1

pixel detector

particle origin

lllustration:
Track scoring, a perfect track with all hits assigned correctly.
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Track ranking A good track

truth track

strip detector found track

4 pixel hits, 4 strip hits created
4 pixel hits, 3 strip hits found and assigned

that’s an ok track,
you got 7 out of 8,
naive score = 7/8 = 0.875

pixel detector

particle origin

lllustration:
Track scoring, a good track with all but one hit assigned correctly.
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Track ranking ~Another good track

N\ truth track
found track

strip detector
4 pixel hits, 4 strip hits created

that's an ok track,
you got 7 out of 8,
naive score = 7/8 = 0.875

does a pixel hit weigh the same
as a strip hit 7

NOT if we want to measure primary

pixel detector .
particles !

particle origin
your estimation of the particle origin

lllustration:
Track scoring, a good track with all but one hit assigned correctly, resulting in a slight mis-measurement of the impact parameter.

3 pixel hits, 4 strip hits found and assigned
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Track ranking ~Another good track

Another good track

. truth track
strip detector \ found track
4 pixel hits, 4 strip hits created

4 pixel hits, 3 strip hits found and assigned

that’s an ok track,
you got 7 out of 8,
naive score = 7/8 = 0.875

does a hit at the end weigh the same
as a strip hit 7

NOT if we want to
measure the momentum
precisely !

pixel detector

particle origin

lllustration:
Track scoring, a good track with all but one hit assigned correctly, resulting in a slightly wrong momentum estimation,.
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Track ranking A distorted track

truth track

strip detector found track

4 pixel hits, 4 strip hits created

4 pixel hits, 4 strip hits found
2 wrongly associated

that’s not very good
you got 6 out of 8,
naive score = 6/8 = 0.75

your track is rather distorted

ixel r . .
pixel detecto did you really measure the particle ?

particle origin

lllustration:
Track scoring, a rather distorted track. Is this still good ?



Track ranking A ghost (fake) track

truth track

strip detector found track

4 pixel hits, 4 strip hits created

4 pixel hits, 4 strip hits found
randomly associated (3 associated)

that's garbage
you got 3 out of 8,
naive score = 3/8 = 0.375

your track is a ghost

pixel detector that should not even give you a score !

in fact, it should count as score = -1

particle origin
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Q

truth track

strip detector found track

truth track

strip detector found track

pixel detector

particle origin particle origin

l l

nhits, nholes, chi2, cluster feature, etc ...

nhits, nholes, chi?2, cluster feature, etc ...

10

. o
8r .
.n’ 'J.:o *
. * o .
6 . v ..:".“a. ’
f e *..'l. .

IR St BDT, NN
. ﬂ.hé"f..-').’ °9 %ag ° y

- : : L .'..’, o & % .' °
ot o 4w a E;‘g‘ .&'.0\3 o
ST 5. 5 S
Illustration: 23 01 0 1 2 3 3 5 6

Track scoring as a classification problem.
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| ML [rack/seed classification

Deep learning tracks — Track seeding

Track building demands a lot of computational resources, so one should
choose carefully which seeds to use. Convolutional Neural Networks have
shown? good results in rejecting seeds that do not correspond to real tracks
by comparing the shapes of the hit clusters used in +tha cand

R ... Deep learning tracks — Track quality and classification

CMS Simulation preliminal <PU> = 35 13TeV CMS Simulation

S

Fitted tracks pass through a classifier that rejects fake tracks not corresponding to a

ADC Counts

N

Cluster local Y
Cluster local Y

real particle. Use of deep neural networks ( ) instead of boosted decision trees

(=]

{ ) as classifiers improves efficiency and reduces the fraction of fake tracks.

Work in :
progress:

o)

ttbar event

8 10 12 14 0 2 4
Cluster local X

Efficiency

Fake rate

2A. Di Florio: Convolutional Neural Network for Track Seed Filtering at the CMS HL

https://indico.cern.ch/event /567550 /contributions/2638698/

Track p; (GeV) Track p; (GeV)

Figure 5: Comparison of and classification on simulated tt events with
pile-up 50 in CMS. Efficiency (left) and fake rate (right) as a function of track pt




[rack classification is a perfect playing field for ML
- supervised leaming application
- ATLAS had a ML based scoring In early 2000s (never used in production)

Fake/ghost track identification
- 50 called "fake killer” from LHCD
- NN Implementation based on hit and hole statistics

B field tracker

sye1awWlIofed

Source:
Mike Williams, https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58 CODE.P58 FILE:5410.Y
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ML [rack classiication

[rack classification is a perfect playing field for ML
- supervised leaming application
- ATLAS had a ML based scoring In early 2000s (never used in production)

Fake/ghost track identification
- S0 caled "fake Killer” from LHCD
- NN Implementation based on hit and nhole statistics

LHCb-PUB-2017-011

(\/]-\3500 7 T T T T T T T T T ] g - T | | 7
Q n ] —
S 3000 - * LHCb _ 8 1 - ol ]
Q - * preliminary . L 4ok ]
E 2500 |- " E = Tk :
iZOOO : ——all D’ K 1 é 0.8F -
_ - . u ]
5 - . — fakes ] E 0-F LHCH :
§ 1500 - = % "'£  preliminary :
A n - ] = C =
FC% 1000 :_ . - _: 0.6 E run 2 %host probability E
> E - -.-_._ E 05 :_ track fit y*/ndf _:
500 fe-e*-00 o000 R P PPy - run 1 ghost probability -
(900009009000 %0000 90490009000 00000q 04 — —
ob— ) . il = | : . : : -

1800 1850 1900 0 0.5 1
my. [MeV/c*] efficiency

Source:
Mike Williams, https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58 CODE.P58 FILE:5410.Y
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ML [rack classiication

[rack classification is a perfect playing field for ML
- supervised leaming application
- ATLAS had a ML based scoring In early 2000s (never used in production)

Also, u/p vs pion identification
- single hidden layer NIN trained to perform FID classification

g 1 - Mo T T T g | A A SR L

WWM o0 ebd oo b ¥ & ’8"’;";";""
= - Tl LHCD = - . LHCD -
Q - “ - Q - .. -
o) - * - O - ® e -
o 0.8 e 4 v 08F \ -
s U B Ly
2 o6l PRNE - R =
S 0.6 o S 0.6~ ]
) - - ) - -
v, i ] X B i
S 04+ . 9 04 ]
aa) . i an - * ]
0.2F A log Ly -T) t 0.2F A log L(p -m) -
- +  ProbNNu t - +  ProbNNp T -
O_ T B R BN B B O_ I U B IR R L

0) 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Signal efficiency Signal efficiency
Source:

Mike Williams, https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58 CODE.P58 FILE:5410.Y
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PhyS|CS J@t ST(U CTU (S the charge-weighted approach :

1
i I S i
j=1,N 11 ,_ .
‘ =LNcharge collected in cell

1.0 . : - -
® (] ]
0.8} -
()
T 2 . " g 40000 ©
E 212 | 35000 8
o 214F — ©
1 16 —= 130000
218 x 31 =425000
22F 5| — 20000
10 222" 5 —{15000
. 224 —
X 2.26— — —10000
2.28F 3 —{5000
- 1 L 3 L L L L1 L1 L P | - 1
2337125 42 15 M1 -105 10 0

=
Tl
3o

lllustration:
Hits created by a particles jet in a simplified tracking detector, transverse view (left). lllustration of cluster merging (right).
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ML Dense environments - shared cluster splitting with ANIN

ATLAS pioneered a solution for identiftying and eventually even
split shared clusters

7X7 pixel 49 input 2 hidden 2 output
layers

charge matrix layers

—  cluster compatible
with 1 particle

21 g 40000 &

¢ [mm]

00000

000000

2.18F

00000

cluster compatible
with 2 and more particles

- fraining an artificial neural network (ANN) with test data from Monte Carlo
simulation

- output Interpreted as an a posterior probavillity

- second set of ANIN to estimate particle intersections with sensor & error

See:
The optimization of the ATLAS Track Reconstruction in Dense environments, ATLAS-PHYS-PUB-2015-006
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ATLAS pioneered a solution for identiftying and eventually even
split shared clusters

g2 F ] € ,ge ATLAS Preliminary = TIDE E
30-065_ ATLAS Simutation | | CCA Clustering S ) gqF Smulation, [s13TeV, Z(3 TeV) s Baseline E
%0.05:— \'s=7 TeV —— NN Clustering ug'l 0.92F =
< - 4-pixel wide clusters 1 5 0.9F =
0.04— —] o — - - . .- m
: . @ 088" —a— - E
0.03F - S 0-86;— e A__A_—A—_‘_—;
E - 5 0.84:— =
0.021 E S o0.82F =
o0t & - " 081 E
- ] 0.78 =
055~—500 B0 0 50 100 750 100200 300 400 500 600 700 800 900 1000
Local x resolution [um] Truth Jet P [GeV]
- regains amost flat reconstruction efficiency In jet cores
- similar performance on data although trained on MC
- what will happen with significant radiation damage in the sllicon 7
See:

The optimization of the ATLAS Track Reconstruction in Dense environments, ATLAS-PHYS-PUB-2015-006
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ML opecial signatures - environment detection

Special event topologies may need dedicated track reconstruction

- those are usually more
CPU intensive

----- neutral HSCP displaced M BSM
- Not feasible to run them — Sharged dilepton M lspton
e ANy CHArge W quark
on full scan event photon
B anything
. disappearing displaced
Potential track , /epton
» AR x
- can we use ML to :
Classify regions ¥
displaced X / disEIaCed
dii ; ’ photon
ljet Y
run dedicated < el V v Not pictured:
displaced vertex Vertox displaced o+ ot time decays

tracking in this region:
- allow for large impact parameter
- allow for less hits on track

conversion
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ML =nd-to-end approacn

Convolutional Neural Networks (CNNSs)

Linear Object
Convolutions Pooling Convs Classifier Categories / Positions
= » { ‘- :h yat (xi,yi)
Sl H }at (xi,yi)
a \"’x«’b.\‘ | ‘1
||| == (|20 | at oy
| T it NS
C1 feature maps C3 feature maps
- for track reconstruction 7
Input track image Stub features Segment features Higher level

features

Stub filters

\ 4

# W t!; Convolutions and pooling
See:

Farrel S. et al, The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking, EPJ Web of Conferences 150, 00003 (2017)
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Recurrent Neural Networks (RNNs)

- 6.9. Long Short Term Memory (LS TM) network

- state estimator very similar to the Kalman filter:
single 1ully connected (FC) layer with activation,

uses inout to update hicden state that can be used for prediction on target layer,
|.e. It predict which pixel belongs to the track

Output detector layer
predictions

Input detector layer
arrays

See:

Target track

Input

7 Layer

seed layers

Pixel

20|

10

Model prediction

10

20 30 40
Layer

Farrel S. et al, The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking, EPJ Web of Conferences 150, 00003 (2017)
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ML [racking Challenge

Upcoming Tracking challenge hosted on kaggle

- fraining and test dataset for a mockup detector In HL-LHC environment
particle properties (ID and kinematics)
created hits and features
link map <{hit feature}, particle ID)

- provide scoring function to rate potential solutions

Stage 1 - Feb/Mar 2018: Stage 2 - Q2/3 2018:
optimise track finding score optimise track finding time

lllustration: - ‘
Botton left: simulated event with very high 'e'_r A = 1000) showing only particles with transverse momentum higher than 250 MeV.
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SensitivePosR:SensitivePosZ

600__ J 83.22
A——————— }
E o —— ST L
detector geometry simulation event data
planar barrel/EC type detector with the possibility to easily readable,
pixel/strip system simplify where possible platform independent

well defined goal visualisation different categories
what is success of geometry, for different
and how we measure it hits & found tracks solutions
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Summary Conclusion

Track reconstruction is a natural playing field for ML/DS
- It's also not new to our field
we may just have labeled it differently)
- Unsupenvised leaming: clustering
- supervised leaming: classification
- Interterence y

Recent boost In ML
- we should (and will) profit from it
-we wil have to learn some new
anguage (AuUC vs. Integral)

Watch out for the Tracking -
VIL challenge on kaggle
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Definitions [rack parameterisation

Charged particle trajectory parameterisation
- five parameters needed to descrioe a trajectory localisation on a surface

local position on surface
momentum

charge

q = (lla l27 ¢7 97 Q/p)
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Definition [rack parameterisation

Obviously, every measurement has associated errors

local position on surface

momentum
charge
— l l 0 o%(ly) cov(ly,ly) cov(ly, @) cov(ly,0) couv(ly,q/p)
q- ( Ly %2 ¢7 ? q/p) ( , o%(ly)  cov(ly, @) cou(ly,0) cov(lg,q/p)\
C= o*(p)  cov(9,0) cov(e,q/p)
. . - o*(0)  cov(8,q/p)
L | >alp) )



Conformal mapping techniques

Hough transtorm

- transform your track hits in the X, y space

q = (d@vXOa ¢7X7 Q/E)

q/pT

parameter space 0,
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Conformal mapping techniques

Hough transtorm

- transform your track hits in the X, y space

q — (%7X07¢7X7 Q/E) \‘\

q/pT

parameter space 0,
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Conformal mapping techniques

Hough transtorm

- transform your track hits in the X, y space

q — (%7X07¢7X7 Q/E) \‘\

q/pT

parameter space 0,
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Conformal mapping techniques

Hough transtorm

- transform your track hits in the X, y space

q = (d@vXOa ¢7X7 Q/E)

q/pT

parameter space 0,
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Conformal mapping techniques

Hough transtorm

- transform your track hits in the X, y space

q = (d@vXOa ¢7X7 Q/E)

q/pT

parameter space 0,




Conformal mapping techniques

Hough transtorm

- transform your track hits in the X, y space

q = (d@vXOa ¢7X7 Q/E)

q/pT

parameter space 0,




Conformal mapping techniques

Hough transtorm

- transform your track hits in the X, y space

q = (d@vXOa ¢7X7 Q/E)

q/pT

parameter space 0,
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Conformal mapping techniques

Hough transtorm

- transform your track hits in the x, y space

q = (%7X07 ¢7X7 Q/E)

q/pT

parameter space 0,

y
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Conformal mapping techniques

Hough transtorm

- transform your track hits in the x, y space

q = (%7X07 ¢7X7 Q/E)

q/pT

parameter space 0,

y

N
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Conformal mapping techniques Frotlems

Granularity of grouping in Hough space needs to be adapted to

OroCESS NOIse y
- scattering eflects are very —
narmful for the precision '

. s r > / /
parameter space 0, / /
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2D world A particle through a toy detector
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2D world A particle through a toy detector




2D world A particle througn a toy detector




Track fitting [ east squares minimisation

a classical least squares estimator problem |

2 T -1 .
X = EAmk GgAm,  wih  Am=m, —d, <q ) and G, the covariance of my
k

dr Including transport of q to measurement layer k

and mapping function — 4q
di = hy °fk|k—1 © °f2]1 Of1|0 ‘ \
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Track fitting [ east squares minimisation

a classical least squares estimator problem |

X = EAkaG;Amk wih — Amy, =m, —d, (q) and Gy the covariance of mi
dr inoludikng transport of q to measurement layer k
and mapping function — 1
di 5 hie Jiqe-1° - 2 fap e fipo ‘ \
inearise the problem, starting from an initial state (, T /,“"ﬂ\
d.(q,+6q)=d, (q))+D, dq \~;\\
with Jacobian D)} = HIJFk|k—1 e F2|1F1|0 ‘ \\‘::',;'
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Track fitting [ east squares minimisation

a classical least squares estimator problem |

X ? = EAkaG;Amk with  Am, =m, —d, <q ) and Gy, the covariance of my
k

dr Including transport of q to measurement layer k

and mapping function — “

di = hif S0 o fap oo ‘ \/:;',"
inearise the problem, starting from an initial state q T /;"\
dk(q0+6q)sdk(q0)+pk.5q \&f\\
with Jacobian D) = H‘JFHk—l - Fy Fyp ‘ \\‘:::'"
\ AN
2 A \
find the global minimum: 8)( =| 0 \\/;f' ’\\
aq ,x’,’\
‘ a“  \

-1
aq=(2DzG:Dk) S D/G7 (m, - dy ()
k k

-1
C= (ED,Z G;Dk)
k
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Track fitting | east squares minimisation with materia

N reality the particle gets deflected by material
- Multiple coulomb scattering

D
.
g
g
.
.
G
g
G
g
.
.
g
. Q
m rial :
g
g
g
.
g
g
.
g
g
.
.
.
.
g
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Track fitting | east squares minimisation with materia

N reality the particle gets deflected by material
- Multiple coulomb scattering

material
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Track fitting | east squares minimisation with materia

N reality the particle gets deflected by material
- Multiple coulomb scattering

» modification of the »? function

material

x° =Y Am/!G'Am, + Y 86,0766 S
k i "

with: Amk =m, —dk (q,éHi)

88



Track fitting | east squares minimisation with materia

N reality the particle gets deflected by material
- Multiple coulomb scattering

» modification of the »? function
x° =Y Am/!G'Am, + Y 86,0766
k i

with: Amk =m, —dk (q,éHl.)

» every layer is a material layer

- creates a computational problem:
matrix inversion of huge matrix to find the
72 minimum
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Track fitting <alman filter with material

when crossing a material layer
- INCrease covariance by "noise’ term according to the amount of material
Crosseo
(scattering has expected mean of O)
- energy loss Is applied deterministically — )
(additional noise term for straggling added) N
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Track fitting <aiman fiter with material

when crossing a material layer
- INCrease covariance by "noise’ term according to the amount of material
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Track fitting <alman filter with material

when crossing a material layer
- INCrease covariance by "noise’ term according to the amount of material
Crosseo
(scattering has expected mean of O)
- energy loss Is applied deterministically — )

(additional noise term for straggling added)
material

|

surface k — 1 scattering matter surface k

predicted state @y

\ '
.
7
g
.
4
¢
¢
g
g
¢
g
o
o
¢
o
o
b
4
&
4
4
4
.
o
o
o
o
o
o
o
o
3
¢
o
o
5
. \

filtered state measurement my
Lp—1|k—1

Z = Zk_1 2= Zk
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Track fitting Kalman filter expressed In matns

let's assume the k-th filter step
- propeagate parameters and covariances rom k-1 10 k adding noise Ok

qr|k-1 :fk|k—1(qk—1|k—1)

Ciik-1= Fk|k—1Ck—1|k—1Fz|k_1 + Oy —
- Update the prediction with
9 O ~.
Gk = Grlk-1 + Killmy —hilqii-1) ] \ ~
Cippe=U - KiH ) Cpp o \
with gain matrix Kx . \ \
K, = Ck|k_1HE+ H/CH)™ > \
measurement covariances \ \ \
k
run the smoother from k+1 10 k \‘/
k-1
Qiln = Gklk T Ak(qk+1|n ~ qk+1|k) / \

Cipn=Cips = Ar(Crorii — Cror)As

with smoother gain matrix Ax. Ay = Ck|sz+1| (C k+1|k)_1
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Track reconstruction at the H_-[ HC

Momentum vs Pseudorapidity
25

HL-LHC environment

8§ “

- Detector coverage to |n| < 4 Wb ”
most particles are of low/mid s “’
momentum and heavily affected - .
by detector material o "

- Expected ple-up of <p> ~ 200 £ "
spread out over a luminous region I )

-10 -5
n

Transverse Momentum

107"

102

10°°

lllustration:
Top right: moment QQQIEUJ’/T}{OI’ charged particles inside the pseudo rapidity window of |n| < 4.
Bottom right: transverse-momentum spectrum of simulated particles, display cut, possible reconstruction cut.

Botton left: simulated event with very high event pileup (u = 1000) showing only particles with transverse momentum higher than 250 MeV.



Track ranking proposed setup
Weighted track score

. ruth track
strip detector trut

high weight

mid weight
low weight

low weight
low weight
mid weight

high weight
highest weight

pixel detector

particle origin
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Track ranking proposed setup
Weighted track score

truth track

strip detector found track

pixel detector

particle origin

high weight

mid weight
low weight
low weight
low weight
mid weight

high weight
highest weight
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Summary Farticles in fracking aetectors




Summary Farticles in tfracking detectors

v

lost due to hadronic interaction lost because of too low momentum

Figures:
Longitudinal (left) and transverse (right) view of particles in a detector with material interactions.
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