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Introduction Charged particles
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hits from 1 particle fraction of hits  
from particles 

in 200 pile-up events

Illustration: 
Hits (in transverse view) created in a tracking detector with constant magnetic field without interaction with the detector material (left), A schematic view of a particle 
moving in a constant magnetic field (right).
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Initial particle parameters: 
position x, momentum p, charge q

measurements: 
position m, error σ(m),  
features fi 



Introduction Charged particles in the detector
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Illustration: 
Longitudinal (left) and transverse (right) schematic of charged particles in a test detector.

longitudinal view transverse view

Particle trajectories can not be directly measured and have to be reconstructed from localisations.

high transverse  
momentum

low transverse  
momentum
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Tracking detectors are innermost detection devices,  
closest to the beam interaction region: 

- measure trajectory and origin of  
- charged particles  

Introduction Tracking Detectors

track reconstruction: 
trajectory measurement gives 
access to kinematic information 
of the charged particle: 
origin, momentum, charge


vertex reconstruction: 
association of particles to an origin allows 
for grouping of particles and subsequent 
event reconstruction 

Illustration: 
Transverse (right) schematic of charged particles in a test detector.
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Typical setup of a Tracking detector 
- very precise innermost tracker: silicon pixel detector 
- several additional detection layers, e.g. silicon strip detectors 
- embedded in a magnetic field for particle bending (momentum measurement) 
- hermetic coverage, highly efficient, radiation tolerant  

z [mm]

R [mm]

Illustration: 
Longitudinal view of a schematic Tracking detector used for the Tracking ML challenge with a central barrel and endcap system. 

current LHC  
general purpose 

detectors

high luminosity 
upgrade of 
ATLAS/CMS
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z [mm]

R [mm]

Illustration: 
Longitudinal view of a schematic Tracking detector with a central barrel and endcap system. Zoom into the pixel system build from planar sensors.

readout features:  
[(cellID, charge)]

position: (x, y, z)  
error: (ex, ey, ez)
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z [mm]

R [mm]

Illustrations: 
A particle passing through a pixel silicon sensor: it provides a track localisation and some information about the track angle.

Multiple cells hit can be used  
to increase measurement 
precision

track
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θL
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x
y

z

particle direction information
in cluster shape

direction: (theta, phi)  
error: (etheta, ephi)

Measurement precision of a few micrometers.

[(cellID, c. charge)]
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Illustrations: 
A particle passing through a pixel silicon sensor: it provides a track localisation and some information about the track angle.

Multiple cells hit can be used  
to increase measurement 
precision
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z [mm]

R [mm]

Illustration: 
Longitudinal view of a schematic Tracking detector with a central barrel and endcap system. 

Strip detector is less precise 
- often built with a double module  

structure to achieve a 3D measurement 

Measurement precision of a few tens of micrometers.



9

ideal real

Detector material is the main source of process noise 
- despite significant efforts to build the most light-weight detectors

Introduction Tracking detectors

Particles interact with the detector material  
- introduces different types and levels of disturbance (process noise)



Multiple Coulomb Scattering
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Charged particle undergoes multiple coulomb scattering when 
passing through material 

- net deflection: Var(𝜃) = 0 

- almost Gaussian process noise (except for single large angle scattering)

θ
space

θ
proj

initial direction

direction after scattering

18

engine, however, has been designed to stick to a generic detector model such that no information about
the underlying detector specifications can be accessed, while still keeping the maximum performance
level. This requirement has been met by defining the corrections as actions known to the Layer and
TrackingVolume that are able to return a pathCorrection() or bendingCorrection(), respectively,
depending on the actual input parameters of the track.

4.1.3 Multiple Scattering: the MultipleScatteringUpdator AlgTool

A particle that traverses detector material undergoes successive small angle deflections, caused by
multiple (Coulomb) scattering. Given the central limit theorem it can be assumed that the sum of
these small variations is Gaussian distributed and symmetrically centered around zero. However, large
angle single scattering processes disturb the purely Gaussian probability density function (PDF) and
add large non-Gaussian tails. As a rule of thumb, the assumption of the Gaussian character of the
underlying PDF is valid to about 98%, being limited to the core region of the distribution.
The integration of multiple scattering e↵ects is handled by a dedicated AlgTool, the so-called Multiple-
ScatteringUpdator. The calculation is done using the well known Highland formula [13], which is an
empirical adoption of Molière’s solution of the transport equation starting from the classical Ruther-
ford cross section of a single scattering process [14].
Highland expanded the original expression given by Molière for the root mean square �

proj
ms of the

projected scattering angle ✓
proj with an empirical logarithmic correction term to adopt for the slightly

underestimated screening of the nucleus Coulomb potential in materials with lower Z. Furthermore,
he transformed — for convenience — the result into a function of the pathlength t in terms of the
radiation length X0 which leads to the well-known expression10

�
proj
ms =

13.6 MeV
�cp

Z

p
t/X0 [1 + 0.038 ln (t/X0 )], (10)

when Z and p describe the charge and momentum of the incident particle, respectively.

Projection Correction and lateral Displacement In the ATLAS track parameterisation the momen-
tum direction is expressed through the globally defined polar angle ✓ and the azimuthal angle �, see
Eq. 1. Since ✓ already represents a projected angle with respect to the z axis, �

proj
ms can be directly

applied to the corresponding covariance term, while for the azimuthal angle a correction term of 1
sin ✓

has to be applied to the root mean square to account for the out of plane projection.
Another aspect of multiple scattering is that, in general, there exists a correlation between the actual
deflection in space ✓

space and the local coordinates after the scattering process. The local displacement
due to scattering is hereby depending on the two projected scattering angles and the thickness of the
traversed material. In a Layer-based description of the reconstruction geometry, the layer thickness
is, however, only a model parameter and has little to do with the actual thickness traversed during
the multiple scattering process (in the following referred to as scattering thickness). In addition, the
Layer-based description intrinsically assumes that the material free regions in the according detector
volumes are big in comparison to a typical scattering thickness, and the local error on the successive
measurement surface is therefore mainly dominated by the directional uncertainties in � and ✓. The
displacement on the scattering surface caused by the multiple scattering process is therefore omitted
in this application. For the continuous integration of material e↵ects, on the other hand, the actual
path length s corresponds to the scattering thickness and it is included in the treatment of multiple
scattering [12].
Molière’s theory of multiple scattering is — when being applied in the small angle assumption —
not restricted to a specific particle type nor spin. It is based on the assumption that the deflection
of the scattered particle does not change the magnitude of the particle’s momentum, or, in other
words, it is a pure elastic single scattering theory. Rossi and Greisen [15], however, showed that for
electrons that traverse a significant amount of material this assumption is not valid anymore since the
electron momentum changes substantially due to radiation loss, which is described in more detail in
Sec. 4.1.4. This leads to a modification of the momentum dependency from 1/p

2 to 1/(pipf ), when
10The multiple scattering process itself has little to do with the radiation length X0 other that both show the same

dependency on the atomic number Z and the molecular weight A of the material.

inverse proportional to momentum, i.e. low momentum particles scatter more !
Illustration: 
Passage of a charged particle through dense matter resulting in a significant deflection of the particle direction.



Multiple Coulomb Scattering Effects
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Passage of particle through detector material 
- deflects the initial particle direction 
- is inverse proportional to the particle momentum 
- adds almost gaussian process noise to the measurement

Toy Model: 
Scattering emulation by passage through ten layers of material resulting in a core gaussian distribution.
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gaussian distribution, 
predicted by central limit theorem

Passage of particle through detector material 
- deflects the initial particle direction 
- is inverse proportional to the particle momentum 
- adds almost gaussian process noise to the measurement

Toy Model: 
Scattering emulation by passage through ten layers of material resulting in a core gaussian distribution.



Multiple Coulomb Scattering Effects
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gaussian distribution, 
predicted by central limit theorem

in the presence of multiple coulomb scattering  and single large Rutherford scattering

non-gaussian tails

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py 

Passage of particle through detector material 
- deflects the initial particle direction 
- is inverse proportional to the particle momentum 
- adds almost gaussian process noise to the measurement

Toy Model: 
Scattering emulation by passage through ten layers of material resulting in a core gaussian distribution.
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The model parameters ✏, �core and �tail are hereby depending on the traversed material thickness in
terms of the radiation length X0 and are taken from [16]. Recently [17] even more precise models of
the multiple scattering descriptions have been developed that expand the double Gaussian mixture
model with a non-Gaussian tail descriptiond. The current ATLAS extrapolation engine has stuck
to the Gaussian mixture since it shows satisfactory agreement with the full Geant4 simulation while
being lightweight and convenient. A future inclusion of more sophisticated models will however be
easily possible by yet another implementation of the IMaterialEffectsUpdator interface13.
Figure 10 shows both the Highland formula application and the Gaussian mixture model as imple-
mented in the MaterialEffectsUpdator in comparison with data from a Monte Carlo simulation
using the well known and validated Geant4 [18] simulation toolkit. It also illustrates the main defini-
tions used in the calculation of the projected scattering angle.

4.1.4 Energy Loss: the EnergyLossUpdator AlgTool

Energy loss of particles traversing detector material occurs due to electromagnetic e↵ects - mainly
ionisation (in the order of ↵

2), bremsstrahlung (order of ↵
3), direct pair production (order of ↵

4)
and photonuclear interactions; ↵ denotes the fine-structure constant with ↵ ' 1/137. The PDF ⇢(�)
(often referred to as straggling function) of the energy loss � is highly non-Gaussian, but for the use
in most track fitting applications an approximation to a Gaussian distribution has to be done.
For heavy particles with masses above 100 MeV peripheric collisions with the detector material — also
called ionisation loss — dominate the overall energy loss process. The probability for hard collisions
with the nuclei of the detector material is suppressed by the factor 1

m2 and can therefore be neglected
for heavy particles. The electron mass, however, is about 200 times smaller than the mass of the next
heavier stable particle and hence interactions with the strong electromagnetic field of the nuclei that
cause bremsstrahlung have to be considered. Above a certain energy threshold, bremsstrahlung starts
to dominate the energy loss distribution for electrons.
The ATLAS EnergyLossUpdator AlgTool performs the energy loss calculation during the track ex-
trapolation process, which depends on the provided ParticleHypothesis, the material properties
and the kinematic parameters of the particle. The applied corrections are described in the following
paragraphs.

Energy Loss of heavy Particles The energy loss � of heavy particles in the energy range of final
state particles originating from high energy collision experiments is dominated almost entirely by
ionisation loss. Although this is a stochastic process that follows a PDF ⇢(�), it is justified to treat
it as a deterministic mean or averaged energy loss and a relatively small variance. This is, because �
is usually small in comparison to the particle momentum.
The mean energy loss of a heavy particle per unit length x due to ionisation loss is described by the
well known Bethe-Bloch formula [19]

dE

dx
= ↵

22⇡Na�
2
e
Zme

A�2


ln

2me�
2
�

2
E
0
m

I2(Z)
� 2�

2 + 1/4
E
02
m

E2
� �

�
, (13)

where

Na = 6.023 · 1023, Avogadro’s number
Z, A atomic number and weight of the traversed medium

m, me rest masses of the particle and the electron
� = p/E, where p is the particle momentum
� = E/m

�e = 3.8616 · 10�11 cm is the Compton wavelength of the electron
I(Z) the mean ionisation potential of the medium,
E
0
m the maximum energy transferable to the electrons of the medium with

E
0
m = 2me

p
2

m2
e + m2 + 2me

p
p2 + m2

� density correction.
13It is worth mentioning that this is one of the biggest benefits of the component software model that has been

deployed in the ATLAS track reconstruction.

primary ionisation + 
secondary ionisation

≈ 3 x primary ionisation 

23

where c = t/ ln 2 and z is evidently restricted to z 2 (0, 1).
The average mean (radiative) energy loss per unit length is then given as15

(dE/dx)rad = �Ei/X0 (18)

From Eq. (18) one can learn that the expectation value for z is < z >= e
�t and the variance can

be approximated by var < z >= e
�t ln 3/ ln 2 � e

�2t, which propagates a noise addition of �
2
q/p to the

covariance matrix of the ATLAS track parameter q/p as

�
2
q/p =

1
< z >2 p2

· var < z >, (19)

when this kind of update is applied.
The standard track parameterisation used in the ATLAS tracking EDM is defined such that the
uncertainties of the track are implicitly assumed to be Gaussian distributed, and it can be shown
that the application of the average energy loss described by the Bethe-Heitler formula (including the
Gaussian noise addition to the track uncertainties) introduces a strong bias towards too low momentum
reconstruction [25]. Figure 13 shows a comparison of the energy loss distributions of a heavy particle
(µ) to an electron when traversing the same detector layer.

10 2
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Figure 13: Comparison of muon energy loss to electron energy loss in a silicon layer of 10% X0 thickness.

The particles have been generated using Geant4 and where propagated with a initial momentum of 2 GeV . The

muon energy loss distribution follows hereby the Landau distribution, while the electron energy loss distribution

is disturbed by the long tail due to radiation loss. This results in a theoretical mean value up to 10 times

bigger than for pure ionisation loss.

4.2 Summary of the Material E↵ects Integration

The ATLAS extrapolation engine enhances di↵erent material update mechanisms that have been
described within this section. Some of the described options are dedicated to the fast track simulation
FATRAS. Table 1 gives — for the convenience of the reader — a summary of the implemented
techniques and indicates the configuration flags to be chosen for the various applications. The property
flags refer to the MultipleScatteringUpdator and EnergyLossUpdator, respectively.
The width of the Gaussian approximations to the energy loss functions can be adjusted by specifying
one additional property of EnergyLossUpdator.

15Note that Eq. (18) led to the definition of X0 through X0
�1 ⇡ 4↵r2

eZ(Z + 1)N · Ei(ln 183Z�1/3 + 1/18), when
N = ⇢Na/A is the number of atoms per unit area and re the classical radius of the electron.
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The standard track parameterisation used in the ATLAS tracking EDM is defined such that the
uncertainties of the track are implicitly assumed to be Gaussian distributed, and it can be shown
that the application of the average energy loss described by the Bethe-Heitler formula (including the
Gaussian noise addition to the track uncertainties) introduces a strong bias towards too low momentum
reconstruction [25]. Figure 13 shows a comparison of the energy loss distributions of a heavy particle
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4.2 Summary of the Material E↵ects Integration

The ATLAS extrapolation engine enhances di↵erent material update mechanisms that have been
described within this section. Some of the described options are dedicated to the fast track simulation
FATRAS. Table 1 gives — for the convenience of the reader — a summary of the implemented
techniques and indicates the configuration flags to be chosen for the various applications. The property
flags refer to the MultipleScatteringUpdator and EnergyLossUpdator, respectively.
The width of the Gaussian approximations to the energy loss functions can be adjusted by specifying
one additional property of EnergyLossUpdator.
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Consider electrons:

with
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After passage of one X0 electron has 
lost all but (1/e)th of its energy

[i.e. 63%]

23

where c = t/ ln 2 and z is evidently restricted to z 2 (0, 1).
The average mean (radiative) energy loss per unit length is then given as15

(dE/dx)rad = �Ei/X0 (18)

From Eq. (18) one can learn that the expectation value for z is < z >= e
�t and the variance can

be approximated by var < z >= e
�t ln 3/ ln 2 � e

�2t, which propagates a noise addition of �
2
q/p to the

covariance matrix of the ATLAS track parameter q/p as

�
2
q/p =

1
< z >2 p2

· var < z >, (19)

when this kind of update is applied.
The standard track parameterisation used in the ATLAS tracking EDM is defined such that the
uncertainties of the track are implicitly assumed to be Gaussian distributed, and it can be shown
that the application of the average energy loss described by the Bethe-Heitler formula (including the
Gaussian noise addition to the track uncertainties) introduces a strong bias towards too low momentum
reconstruction [25]. Figure 13 shows a comparison of the energy loss distributions of a heavy particle
(µ) to an electron when traversing the same detector layer.

10 2

-510

-410

-310

-210

-110

10
-Δ [MeV]

μ (with Landau fit)
e

Geant4

Figure 13: Comparison of muon energy loss to electron energy loss in a silicon layer of 10% X0 thickness.

The particles have been generated using Geant4 and where propagated with a initial momentum of 2 GeV . The

muon energy loss distribution follows hereby the Landau distribution, while the electron energy loss distribution

is disturbed by the long tail due to radiation loss. This results in a theoretical mean value up to 10 times

bigger than for pure ionisation loss.

4.2 Summary of the Material E↵ects Integration

The ATLAS extrapolation engine enhances di↵erent material update mechanisms that have been
described within this section. Some of the described options are dedicated to the fast track simulation
FATRAS. Table 1 gives — for the convenience of the reader — a summary of the implemented
techniques and indicates the configuration flags to be chosen for the various applications. The property
flags refer to the MultipleScatteringUpdator and EnergyLossUpdator, respectively.
The width of the Gaussian approximations to the energy loss functions can be adjusted by specifying
one additional property of EnergyLossUpdator.

15Note that Eq. (18) led to the definition of X0 through X0
�1 ⇡ 4↵r2

eZ(Z + 1)N · Ei(ln 183Z�1/3 + 1/18), when
N = ⇢Na/A is the number of atoms per unit area and re the classical radius of the electron.
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Energy loss Effects
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primary ionisation + 
secondary ionisation

≈ 3 x primary ionisation 

Ionisation

Bremsstrahlung
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Hadronic interactions Effects

14

Vast majority of charged particles from p-p interactions are hadrons 
- those interact with the nuclei of the detector material 
- usually leads to the destruction of the particle and is the main  

source of inefficiency in track reconstruction 

- there are many different processes that 
can happen in hadron-nucleus interactions 

- resulting shower has hadronic, but also EM  
shower components 

- nuclear interaction length defined as the  
mean path length 𝛬0 by which the number of 
charged particles is traversing through matter  
is reduced by 1/e

Nuclear interactions



Track reconstruction at LHC
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Figure: 
ATLAS pixel model as described in simulation (left), tomography from vertices built from tracks for hadronic interactions (right)



Introduction Physics
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The reason for the data race … 

1010

Figure: 
Standard Model cross sections measured with the ATLAS experiment and compared to theoretical predictions, July 2017
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Maximise (re)search potential by maximise total number of collisions 
- filter (trigger) “interesting” events 
- increase the number of collisions per beam crossing: event pile-up 

  
Event pile-up 

- when proton bunches collide multiple p-p interactions take place 
- most of them are “uninteresting” p-p interactions, hoping for one interesting event

beam A beam B

multiple p-p interaction: 
pile-up µ

detector

Illustration: 
Simplified illustration of pile-up in a detector by colliding bunches of protons.



Introduction Physics
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Plots: 
Kinematic parameters of charged particles from p-p interactions as simulated with 
the PYTHIA8 generator.

Vast majority of interaction 
are “uninteresting” 

- yet to understand the event 
we spend a lot of time in 
understanding them 

Majority of particles have 
low/mid momentum 

- has consequences on the  
interaction with detector
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Plots: 
Kinematic parameters of charged particles from p-p interactions as simulated with 
the PYTHIA8 generator.

Vast majority of interaction 
are “uninteresting” 

- yet to understand the event 
we spend a lot of time in 
understanding them 

Majority of particles have 
low/mid momentum 

- has consequences on the  
interaction with detector



Introduction Charged particles
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hits from 1 particle fraction of hits  
from particles 

in 200 pile-up events
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hits from 1 particle fraction of hits  
from particles 

in 200 pile-up events



Investigation Pile-up
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Event pile-up has follows a  
beam profile around the interaction 
region 

- currently gaussian with 𝜎 ~ 55mm 
- future possible flat profile

true longitudinal 
track origin position

measured  
longitudinal track 

origin position

1 p-p collision 
LHC start-up 2009

Figures: 
Tracking detector (left top), longitudinal view of tracks emerging from one vertex (right top), true and measured longitudinal track origin (right), illustration of 
beam profile (left bottom),



Investigation Pile-up
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5 p-p collisions 
LHC early Run-1 2010

40 p-p collisions 
LHC early Run-2 2015/16

true longitudinal 
track origin position

measured  
longitudinal track 

origin position

true longitudinal 
track origin position

measured  
longitudinal track 

origin position

Figures: 
Longitudinal view of tracks emerging from one vertex (top), true (middle) and measured longitudinal track origin (bottom), for 5 proton-proton collisions (left), 
and 40 proton-proton collisions (right).
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5 p-p collisions 
LHC early Run-1 2010

40 p-p collisions 
LHC early Run-2 2015/16

true longitudinal 
track origin position

measured  
longitudinal track 

origin position

true longitudinal 
track origin position

measured  
longitudinal track 

origin position

Figure: 
Reconstructed vertices in a recorded collisions with the CMS experiment.
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true longitudinal 
track origin position

measured  
longitudinal track 

origin position

true longitudinal 
track origin position

measured  
longitudinal track 

origin position

200 p-p collisions 
HL-LHC conditions

1000 p-p collisions 
5ns scenario for FCC-hh

Figures: 
Longitudinal view of tracks emerging from one vertex (top), true (middle) and measured longitudinal track origin (bottom), for 200 proton-proton collisions 
(left), and 1000 proton-proton collisions (right).



Track reconstruction at LHC  
with high particle multiplicities
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Figure 1: (top row) The number of Pixel (left) and SCT (right) hits on tracks for
data (points with errors) and MC (histogram) for two di�erent centrality bins: 0-10%
(open/dotted) and 40-80% (closed/solid). (bottom row) The average number of Pixel
(left) and SCT (right) hits as a function of � for MC and data in the same two centrality
bins.

dense environment of the most central collisions is reasonably well modelled.

3. J/� production as a function of centrality

The oppositely-charged di–muon invariant mass spectra in the J/⇥ region
after the selection are shown in Figure 2. The number of J/⇥ � µ+µ� decays
is then found by a simple counting technique. The signal mass window is
defined by the range 2.95–3.25 GeV. The background is derived from two
mass sidebands, 2.4–2.8 GeV and 3.4–3.8 GeV, with a linear extrapolation.
To determine the uncertainties related to the signal extraction, an alternative
method based on a maximum likelihood fit with the mass resolution left
as a free parameter is used as a cross check, as explained in section 3.1.

5

Figures: 
Hits on track statistics in the Pixel and strip (SCT) detector of ATLAS, comparing low multiplicity and high multiplicity event classes. 

still



Track reconstruction CPU consumption
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Track reconstruction is a combinatorial problem 
- naturally dominates the reconstruction time of hadron colliders  
- LHC experiments have massively invested into code/SW optimistion



Track reconstruction Extrapolation HL-LHC
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200



Track reconstruction Extrapolation HL-LHC / FCC-hh
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200 1000
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Track finding Basics

28

Starting from measurements (with given accuracy) on detector layers

Illustration: 
Hits created by several particles in a simplified tracking detector, longitudinal view (left) and transverse view (right).



z

Track finding pattern recognition methods
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Illustration: 
Hits created by several particles in a simplified tracking detector, transverse view.



z

Track finding a clustering problem

30

This is a classical clustering/unsupervised learning problem 
- find sets of hits that belong together

Illustration: 
Hits created by several particles in a simplified tracking detector, transverse view.

what defines  
this relationship ?



ML Clustering and unsupervised learning
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A historical view (of a part of London)

Illustration: 
Parts of the map of the 1854 cholera outbreak in London’s Soho district by Dr. John Snow.



ML clustering
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a classical clustering problem 
- find sets of hits that belong together

Illustration: 
Detail of the map of the 1854 cholera outbreak in London’s Soho district by Dr. John Snow.

What defines a belonging  
relation ? 

- simple solution here: 
“clustering by euclidian distance” 
(distance measure) 

… infected water pump (highly correlated with cluster centers)

Example: k-means algorithm 



z

Track finding a clustering problem

33

This is a classical clustering problem 
- find sets of hits that belong together

euclidian distance measure another distance measure

https://fusiontables.google.com/DataSource?docid=1HsIb_r4gYYmIz8y_UE1h-X8yUtAYW2INy99BR_c#map:id=3

need some 
domain knowledge

https://fusiontables.google.com/DataSource?docid=1HsIb_r4gYYmIz8y_UE1h-X8yUtAYW2INy99BR_c#map:id=3


Global pattern recognition Conformal mapping
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34

Conformal mapping : Hough transform 
- transform your track hits from the x, y space  

into a more appropriate space 

- let’s assume that particles come from  
the interaction region + solve in the  
transverse direction

Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view.
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Conformal mapping : Hough transform 
- transform your track hits from the x, y space  

into a more appropriate space 

- let’s assume that particles come from  
the interaction region + solve in the  
transverse direction

Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view.



Conformal mapping techniques Toy example
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phi  … emission angle in transverse direction at origin 
rho  … radius of the helix in transverse plane

Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: perfect solution in the hough space.



Conformal mapping techniques Toy example
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Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses..



Conformal mapping techniques Toy example
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Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

… common solution compatible for all hits in (x,y) space



ML clustering/unsupervised learning
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Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

… clusters in Hough space 

here is our 
domain knowledge to inject !



ML clustering/unsupervised learning
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Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

What defines a belonging  
relation ? 

- possible solution here: 
distance measure as distance 
to the assumed solution 

- additional domain knowledge: 
two hits on one module  
are not allowed    



Conformal mapping techniques Toy example
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Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

… common (=true) solution compatible for all hits in (x,y) space

Optimal: no noise & analytical mapping



Trajectories Magnetic field maps
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Figure 4: The realistic magnetic field in the r � z plane for the entire ATLAS detector. The upper plot

shows the magnetic field strength in the r � z plane at an azimuthal angle of � = ⇡/8 which lies within one

Muon System toroid structure. The plots at the bottom focusses on the magnetic field of the Inner Detector

as described by the ATLAS-CSC-01-02-00 layout. The first plot at the bottom shows the �-dependency of

the magnetic field at di↵erent radii in steps of 100 millimeter at z = 0: the homogeneity of the field in the

ID is broken in radial and azimuthal direction even in the very central part of the solenoid. The second plot

shows the magnitude of the magnetic field shown within a quarter of the Inner Detector.

rameters and omits the transport of the associated covariances can be chosen. This is optimised
for situations where the transported error represented at the destination surface is not needed.

• The globalPositions() method is designed to fill a list with 3D points along the track in
intervals of a given step length and confined within a given volume. It is mainly performed
during the road building process of the pattern recognition stage.

• The validationAction() enables to call event- or track-based validation directives from outside
(e.g. such as parameter resetting or the filling of validation information into appropriate output

B

coil

Illustrations: 
Manget system of the CMS (top) and ATLAS (bottom) experiment.



Trajectories Magnetic field maps
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Difference between homogenous and ATLAS magnetic field 
- middle layer of detector: measurement accuracy 0.05 mm, difference O(1) mm

Plots: 
Difference in transverse (top) and longitudinal (bottom) extrapolation between a perfect helical and the actual ATLAS solenoidal magnetic field.



Conformal mapping techniques Toy example
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Gaussian random position smearing of 0.01 units in tangential direction

Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

… true solution of the particle emission angle and bending radius



ML clustering/unsupervised learning
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Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

(a)

(c)

(b)

The assumed solution can 
be subject to modification 

- may differ for different subsets 
of in the cluster 

- may be updated with more  
information added to the cluster 
(as for any clustering algorithm) 

Clustering with adaptive distance  
measure 



ML clustering/unsupervised learning
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Plot: 
Improvement over cosine distance measure with adaptive distance clustering, courtesy of S. Amrouche.

Pre-clustering impact  : Nb initial clusters

18

● Nb initial clusters :

      Total_hits/N

        where N in {5,6,7}

● Fewer initial clusters 

● Better score

Cluster algorithm with adaptive distance measure 
- distance to current track hypothesis (= cluster center in mapping space) 

calculated:  
transverse plane (circle)  
longitudinal plane (line)
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Illustration: 
Hits created by one particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

1 particle, no smearing applied.

… common/true solution of the particle emission angle and bending radius



Conformal mapping techniques Toy example
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6 particles, no smearing applied.

Illustration: 
Hits created by six particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

… common/true solutions of the particles emission angles and bending radii



Conformal mapping techniques Toy example
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6 particles, smearing applied.

Illustration: 
Hits created by six particles in a simplified tracking detector, transverse view (left). Right: scan through hough space with different hypotheses for all hits.

… true solutions of the particles emission angles and bending radii



Track seeding and following Basics
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Start of many track finding algorithms is the building of track seeds 
groups of 2 or 3 measurements that are compatible with a crude track hypothesis 

seeds are used to build roads to find track candidates

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore
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‣ a classical least squares estimator problem !

with

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k ,

Ck = Fk !iCiFk !i
T , "4#

where C is the covariance matrix and Fk !i is the Jacobian
matrix of the propagation from layer i to k ,

Fk !i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model h k describes the functional
dependence of the measured quantities in layer k , mk ,
on the state vector at the same layer,

mk = h k "qk # . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk !i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k ,

mk = d k "q0# + !k , "8#

where d k is a composition of the measurement model
function mk = h k "qk # and the track propagator functions

d k = h k ! fk !k −1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk . A linear estimator requires a linearized
track model, and for this the Jacobian Dk of d k is
needed,

Dk = Hk Fk !k −1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk , the functions d k , the Jacobians

Dk , and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d 1

]
d n
%, D = $D1

]
Dn

%, ! =$!1

]
!n
%,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d "q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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linearise the problem, starting from an initial state q0
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q0

with Jacobian
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offers an alternative solution to the large matrix inversion 
- initially developed by I. Kalman to track missiles 
- for HEP pioneered by Billoir and R. Fruehwirth 

performs a progressive way of least square 
estimation  

- equivalent to a χ2 fit (if run with a smoother) 
- start with transport of track parameters 

(and covariances) to measurement surface, 
create predicted parameters (“predicted state”)


- combine/update predicted parameters with 
measurement to updated parameters 
(“filtered state”)
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Track fitting  Kalman filter expressed in maths

54

let’s assume the k-th filter step 
- propagate parameters and covariances from k-1 to k adding noise Qk  

- update the prediction with measurement


run the smoother from  k+1 to k
k+1

k

k-1

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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z = zk−1 z = zk

surface k − 1 surface k

filtered state
qk−1|k−1

scattering matter

predicted state qk|k−1

filtered state qk|k

measurement mk

FIG. 4. Prediction and filter step of the Kalman filter. The
propagation proceeds in the z direction, while the x coordinate
is measured. Adapted from Regler et al., 1996.
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An alternative formulation of the Kalman filter operates
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themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
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b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
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patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
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tions with respect to the predicted track positions using
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single outlier in the track candidate. If there are several
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Such tracks are considered as incompatible. As incom-
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with gain matrix Kk :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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  mapping measurement covariances

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with smoother gain matrix Ak :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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Track fitting Least squares estimator

55

Global χ2  fitter and Kalman filter are least squares estimators that rely 
on gaussian errors:

Gk the covariance of measurement mk 

Qk the noise addition due to material effects (Kalman filter)

χ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi  χ2  contribution from scattering angles (χ2  fitter)
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Global χ2  fitter and Kalman filter are least squares estimators that rely 
on gaussian errors:

Gk the covariance of measurement mk 

Qk the noise addition due to material effects (Kalman filter)
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Track fitting Bremsstrahlung tail for electrons
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material

z

Kalman filter formalism offers a very elegant solution to this problem

z = Ei/Ef

132 R. Frühwirth / Computer Physics Communications 154 (2003) 131–142

as part of the process noise in the Gaussian-Sum Fil-
ter [2]. If such mixtures are to be useful in practice
they have in addition to be parameterized in terms of
the thickness of the material. If the thickness is ex-
pressed in units of radiation lengths of the respective
material, a representation can be obtained which does
not depend on the specific kind of material.
If the actual distribution of the energy loss is dif-

ferent from the theoretical spectrum because of exper-
imental effects (limits of the pattern recognition or ex-
plicit photon reconstruction) it is perfectly possible to
work with the distribution obtained by a full simula-
tion rather than the one predicted by the theory. The
distribution to be approximated is called themodel dis-
tribution, irrespective of whether it has been obtained
from theory or from simulation.
In the simplest case the approximating mixture is

a single Gaussian. In this case it can be used by the
standard Kalman filter, and the mean and the variance
of the approximating Gaussian are chosen such that
the first two moments of the model distribution are
reproduced exactly [3]. In the general case this ap-
proach is not feasible, as moments of rather high order
would have to be approximated. It is well known that
moments of high order depend mainly on the tails of
the distribution—if they exist at all—whereas we wish
to approximate the bulk of the distribution as closely
as possible. The solution is to minimize some kind
of distance between the respective probability density
functions (PDFs) or cumulative distribution functions
(CDFs).

The paper is organized as follows. The physical
model due to Bethe and Heitler [4] and some of its
statistical properties are briefly described in Section 2.
The choice of the distance function and the method of
minimizing it are put forward in Section 3. The quality
of the mixtures obtained in this way are investigated
in Section 4. The parameterization of the mixture
parameters as a function of the material thickness is
presented in Section 5. Finally, a brief summary and
the conclusions are given in Section 6.

2. The Bethe–Heitler model of energy loss

A well-known model of energy loss of electrons
by bremsstrahlung is due to Bethe and Heitler [4].
Let us denote the ratio of the final energy (after
bremsstrahlung) over the initial energy by z and the
thickness of the material (measured in units of the
appropriate radiation length) by t . Then the PDF
(probability density function) of z is given by

f (z) = [− lnz]c−1
!(c)

, with

(1)c = t/ ln 2, 0< z < 1.

In this model, the distribution of z depends on the
thickness t , but not on the initial energy. This note
concentrates on thin layers of material for which it can
be assumed that c < 1. In this case f (z) tends to 0 at
z = 0 and to infinity at z = 1. Fig. 1 shows the PDFs
corresponding to a few values of the thickness t .

Fig. 1. Probability density functions of the Bethe–Heitler model for a few values of the thickness t (in fractions of a radiation length).
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The paper is organized as follows. The physical
model due to Bethe and Heitler [4] and some of its
statistical properties are briefly described in Section 2.
The choice of the distance function and the method of
minimizing it are put forward in Section 3. The quality
of the mixtures obtained in this way are investigated
in Section 4. The parameterization of the mixture
parameters as a function of the material thickness is
presented in Section 5. Finally, a brief summary and
the conclusions are given in Section 6.

2. The Bethe–Heitler model of energy loss

A well-known model of energy loss of electrons
by bremsstrahlung is due to Bethe and Heitler [4].
Let us denote the ratio of the final energy (after
bremsstrahlung) over the initial energy by z and the
thickness of the material (measured in units of the
appropriate radiation length) by t . Then the PDF
(probability density function) of z is given by

f (z) = [− lnz]c−1
!(c)

, with

(1)c = t/ ln 2, 0< z < 1.

In this model, the distribution of z depends on the
thickness t , but not on the initial energy. This note
concentrates on thin layers of material for which it can
be assumed that c < 1. In this case f (z) tends to 0 at
z = 0 and to infinity at z = 1. Fig. 1 shows the PDFs
corresponding to a few values of the thickness t .

Fig. 1. Probability density functions of the Bethe–Heitler model for a few values of the thickness t (in fractions of a radiation length).
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pressed in units of radiation lengths of the respective
material, a representation can be obtained which does
not depend on the specific kind of material.
If the actual distribution of the energy loss is dif-
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tribution, irrespective of whether it has been obtained
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a single Gaussian. In this case it can be used by the
standard Kalman filter, and the mean and the variance
of the approximating Gaussian are chosen such that
the first two moments of the model distribution are
reproduced exactly [3]. In the general case this ap-
proach is not feasible, as moments of rather high order
would have to be approximated. It is well known that
moments of high order depend mainly on the tails of
the distribution—if they exist at all—whereas we wish
to approximate the bulk of the distribution as closely
as possible. The solution is to minimize some kind
of distance between the respective probability density
functions (PDFs) or cumulative distribution functions
(CDFs).

The paper is organized as follows. The physical
model due to Bethe and Heitler [4] and some of its
statistical properties are briefly described in Section 2.
The choice of the distance function and the method of
minimizing it are put forward in Section 3. The quality
of the mixtures obtained in this way are investigated
in Section 4. The parameterization of the mixture
parameters as a function of the material thickness is
presented in Section 5. Finally, a brief summary and
the conclusions are given in Section 6.
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A well-known model of energy loss of electrons
by bremsstrahlung is due to Bethe and Heitler [4].
Let us denote the ratio of the final energy (after
bremsstrahlung) over the initial energy by z and the
thickness of the material (measured in units of the
appropriate radiation length) by t . Then the PDF
(probability density function) of z is given by

f (z) = [− lnz]c−1
!(c)

, with

(1)c = t/ ln 2, 0< z < 1.

In this model, the distribution of z depends on the
thickness t , but not on the initial energy. This note
concentrates on thin layers of material for which it can
be assumed that c < 1. In this case f (z) tends to 0 at
z = 0 and to infinity at z = 1. Fig. 1 shows the PDFs
corresponding to a few values of the thickness t .
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as part of the process noise in the Gaussian-Sum Fil-
ter [2]. If such mixtures are to be useful in practice
they have in addition to be parameterized in terms of
the thickness of the material. If the thickness is ex-
pressed in units of radiation lengths of the respective
material, a representation can be obtained which does
not depend on the specific kind of material.
If the actual distribution of the energy loss is dif-

ferent from the theoretical spectrum because of exper-
imental effects (limits of the pattern recognition or ex-
plicit photon reconstruction) it is perfectly possible to
work with the distribution obtained by a full simula-
tion rather than the one predicted by the theory. The
distribution to be approximated is called themodel dis-
tribution, irrespective of whether it has been obtained
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a single Gaussian. In this case it can be used by the
standard Kalman filter, and the mean and the variance
of the approximating Gaussian are chosen such that
the first two moments of the model distribution are
reproduced exactly [3]. In the general case this ap-
proach is not feasible, as moments of rather high order
would have to be approximated. It is well known that
moments of high order depend mainly on the tails of
the distribution—if they exist at all—whereas we wish
to approximate the bulk of the distribution as closely
as possible. The solution is to minimize some kind
of distance between the respective probability density
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The paper is organized as follows. The physical
model due to Bethe and Heitler [4] and some of its
statistical properties are briefly described in Section 2.
The choice of the distance function and the method of
minimizing it are put forward in Section 3. The quality
of the mixtures obtained in this way are investigated
in Section 4. The parameterization of the mixture
parameters as a function of the material thickness is
presented in Section 5. Finally, a brief summary and
the conclusions are given in Section 6.

2. The Bethe–Heitler model of energy loss

A well-known model of energy loss of electrons
by bremsstrahlung is due to Bethe and Heitler [4].
Let us denote the ratio of the final energy (after
bremsstrahlung) over the initial energy by z and the
thickness of the material (measured in units of the
appropriate radiation length) by t . Then the PDF
(probability density function) of z is given by

f (z) = [− lnz]c−1
!(c)

, with

(1)c = t/ ln 2, 0< z < 1.

In this model, the distribution of z depends on the
thickness t , but not on the initial energy. This note
concentrates on thin layers of material for which it can
be assumed that c < 1. In this case f (z) tends to 0 at
z = 0 and to infinity at z = 1. Fig. 1 shows the PDFs
corresponding to a few values of the thickness t .

Fig. 1. Probability density functions of the Bethe–Heitler model for a few values of the thickness t (in fractions of a radiation length).
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the distribution—if they exist at all—whereas we wish
to approximate the bulk of the distribution as closely
as possible. The solution is to minimize some kind
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The paper is organized as follows. The physical
model due to Bethe and Heitler [4] and some of its
statistical properties are briefly described in Section 2.
The choice of the distance function and the method of
minimizing it are put forward in Section 3. The quality
of the mixtures obtained in this way are investigated
in Section 4. The parameterization of the mixture
parameters as a function of the material thickness is
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Let us denote the ratio of the final energy (after
bremsstrahlung) over the initial energy by z and the
thickness of the material (measured in units of the
appropriate radiation length) by t . Then the PDF
(probability density function) of z is given by

f (z) = [− lnz]c−1
!(c)

, with

(1)c = t/ ln 2, 0< z < 1.

In this model, the distribution of z depends on the
thickness t , but not on the initial energy. This note
concentrates on thin layers of material for which it can
be assumed that c < 1. In this case f (z) tends to 0 at
z = 0 and to infinity at z = 1. Fig. 1 shows the PDFs
corresponding to a few values of the thickness t .

Fig. 1. Probability density functions of the Bethe–Heitler model for a few values of the thickness t (in fractions of a radiation length).



Track fitting electron fitting / non-gaussian noise

57

Electron classification is an obvious playground for ML 
- PID is a standard field for NNs/BDTs 

(Electron) track fitting ? 
- obviously ML can be used to fit a non-linear system 
- the fit function has to make sense, though, it has to behave like an electron 

Idea is not to find the function that fits my measurements best !
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Kalman Filter is per se a linear dynamical system 
- the GSF is a multivariate, but still linear dynamical system 
- Extended Kalman filter, e.g. is an extension with a non-linear transition  
- idea: using NN to describe non-linear transition function: Deep Kalman Filter

�t between time t � 1 and time t 1. The observations xt are distributed according to a distribution
⇧ (e.g. a Bernoulli distribution if the data is binary) whose parameters are a function of the cor-
responding latent state zt. Specifically, the functions G↵, S� , F are assumed to be parameterized
by deep neural networks. We set µ0 = 0, ⌃0 = Id, and therefore we have that ✓ = {↵, �, } are
the parameters of the generative model. We use a diagonal covariance matrix S�(·), and employ
a log-parameterization, thus ensuring that the covariance matrix is positive-definite. The model is
presented in Figure 1b, along with the recognition model q� which we outline in Section 5.

The key point here is that Eq. (2) subsumes a large family of linear and non-linear latent space
models. By restricting the functional forms of G↵, S� , F, we can train different kinds of Kalman
filters within the framework we propose. For example, by setting G↵(zt�1, ut�1) = Gtzt�1 +
Btut�1, S� = ⌃t, F = Ftzt where Gt, Bt, ⌃t, Ft are matrices, we obtain classical Kalman fil-
ters. In the past, modifications to the Kalman filter typically introduced a new learning algorithm
and heuristics to approximate the posterior more accurately. In contrast, within the framework we
propose any parametric differentiable function can be substituted in for one of G↵, S� , F. Learning
any such model can be done using backpropagation as will be detailed in the next section.

x

z� ✓

(a) Variational Autoencoder

Deep Kalman Filters

Rahul G. Krishnan Uri Shalit David Sontag
Courant Institute of Mathematical Sciences

New York University

November 25, 2015

x1 x2 . . . xT

z1 z2 zT

u1

. . .

uT �1

q�(~z | ~x, ~u)

Figure 1: Deep Kalman Filter

1

(b) Deep Kalman Filter

Figure 1: (a): Learning static generative models. Solid lines denote the generative model p0(z)p✓(x|z), dashed
lines denote the variational approximation q�(z|x) to the intractable posterior p(z|x). The variational param-
eters � are learned jointly with the generative model parameters ✓. (b): Learning in a Deep Kalman Filter. A
parametric approximation to p✓(~z|~x), denoted q�(~z|~x, ~u), is used to perform inference during learning.

5 Learning using Stochastic Backpropagation

5.1 Maximizing a Lower Bound

We aim to fit the generative model parameters ✓ which maximize the conditional likelihood of the
data given the external actions, i.e we desire max✓ log p✓(x1 . . . , xT |u1 . . . uT�1). Using the vari-
ational principle, we apply the lower bound on the log-likelihood of the observations ~x derived in
Eq. (1). We consider the extension of the Eq. (1) to the temporal setting where we use the following
factorization of the prior:

q�(~z|~x, ~u) =
TY

t=1

q(zt|zt�1, xt, . . . , xT , ~u) (3)

We motivate this structured factorization of q� in Section 5.2. We condition the variational approxi-
mation not just on the inputs ~x but also on the actions ~u.

Our goal is to derive a lower bound to the conditional log-likelihood in a form that will factorize
easily and make learning more amenable. The lower bound in Eq. (1) has an analytic form of the
KL term only for the simplest of transition models G↵, S� . Resorting to sampling for estimating the
gradient of the KL term results in very high variance. Below we show another way to factorize the
KL term which results in more stable gradients, by using the Markov property of our model.

1More precisely, this is a semi-Markov model, and we assume that the time intervals are modelled separately.
In our experiments we consider homogeneous time intervals.

5

states

observables

actions 
transition

predict st. The third trains classifiers to use s<t to predict st and consequently xt. In essence, the
latent space st is constructed using these classifiers.

Gan et al. (2015) similarly learn a generative model by maximizing a lower bound on the likelihood
of sequential data but do so in a model with discrete random variables.

Bayer & Osendorfer (2014) create a stochastic variant of Recurrent Neural Networks (RNNs) by
making the hidden state of the RNN a function of stochastically sampled latent variables at every
time step. Chung et al. (2015) model sequences of length T using T variational autoencoders. They
use a single RNN that (1) shares parameters in the inference and generative network and (2) models
the parameters of the prior and approximation to the posterior at time t 2 [1, . . . T ] as a deterministic
function of the hidden state of the RNN. There are a few key differences between their work and ours.
First, they do not model the effect of external actions on the data, and second, their choice of model
ties together inference and sampling from the model whereas we consider decoupled generative and
recognition networks. Finally, the time varying “memory” of their resulting generative model is both
deterministic and stochastic whereas ours is entirely stochastic. i.e our model retains the Markov
Property and other conditional independence statements held by Kalman filters.

Learning Kalman filters with Multi-Layer Perceptrons was considered by Raiko & Tornio (2009).
They approximate the posterior using non-linear dynamic factor analysis (Valpola & Karhunen,
2002), which scales quadratically with the latent dimension. Recently, Watter et al. (2015) use
temporal generative models for optimal control. While Watter et al. aim to learn a locally linear
latent dimension within which to perform optimal control, our goal is different: we wish to model the
data in order to perform counterfactual inference. Their training algorithm relies on approximating
the bound on the likelihood by training on consecutive pairs of observations.

In general, control applications deal with domains where the effect of action is instantaneous, unlike
in the medical setting. In addition, most control scenarios involve a setting such as controlling a
robot arm where the control signal has a major effect on the observation; we contrast this with the
medical setting where medication can often have a weak impact on the patient’s state, compared
with endogenous and environmental factors.

For a general introduction to estimating expected counterfactual effects over a population - see
Morgan & Winship (2014); Höfler (2005); Rosenbaum (2002). For insightful work on counterfactual
inference, in the context of a complex machine-learning and ad-placement system, see Bottou et al.

(2013).

Recently, Velez (2013) use a partially observable Markov process for modeling diabetic patients over
time, finding that the latent state corresponds to relevant lab test levels (specifically, A1c levels).

4 Model

Our goal is to fit a generative model to a sequence of observations and actions, motivated by the
nature of patient health record data. We assume that the observations come from a latent state which
evolves over time. We assume the observations are a noisy, non-linear function of this latent state.
Finally, we also assume that we can observe actions, which affect the latent state in a possibly
non-linear manner.

Denote the sequence of observations ~x = (x1, . . . , xT ) and actions ~u = (u1, . . . , uT�1), with
corresponding latent states ~z = (z1, . . . , zT ). As previously, we assume that xt 2 Rd, ut 2 Rc, and
zt 2 Rs. The generative model for the deep Kalman filter is then given by:

z1 ⇠ N (µ0; ⌃0)

zt ⇠ N (G↵(zt�1, ut�1, �t), S�(zt�1, ut�1, �t))

xt ⇠ ⇧(F(zt)).

(2)

That is, we assume that the distribution of the latent states is Normal, with a mean and covariance
which are nonlinear functions of the previous latent state, the previous actions, and the time different

4

See: 
Rahul G. Krishnan Uri Shalit David Sontag , arXiv:1511.05121v2 

Machine Learning in Tracking
 Hammers & Nails, July 2017

J.-R. Vlimant
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Deep Kalman Filter

Uri Shalit at DSHEP2016  
https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confId=102

and learning via stochastic back-progation.
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good track not so good track

completeness 

low χ2/ndf 

uniqueness

small impact  
parameter 
(for primaries)

many compatible 
hits 

short tracks 

holes 

bad fit quality, 
outliers

shared hits

Some of the characteristics can only be checked after all track 
candidates are found

give scores and rank the tracks!

Track ranking What is a good track ?

clusters are compatible
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There is no unique truth matching to define a found track 
we use truth matching per hits

particle origin

pixel detector

strip detector truth track

4 pixel hits, 4 strip hits created
4 pixel hits, 4 strip hits found and assigned

you can’t do better, 
score = 1

Track ranking A perfect track

Illustration: 
Track scoring, a perfect track with all hits assigned correctly.
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There is no unique truth matching to define a found track 
we use truth matching per hits

particle origin

pixel detector

strip detector truth track
found track

4 pixel hits, 4 strip hits created
4 pixel hits, 4 strip hits found and assigned

you can’t do better, 
score = 1

Track ranking A perfect track

Illustration: 
Track scoring, a perfect track with all hits assigned correctly.
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particle origin

pixel detector

strip detector truth track
found track

4 pixel hits, 4 strip hits created
4 pixel hits, 3 strip hits found and assigned

that’s an ok track, 
you got 7 out of 8, 

naive score = 7/8 = 0.875

Track ranking A good track

Illustration: 
Track scoring, a good track with all but one hit assigned correctly.
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particle origin

pixel detector

strip detector truth track
found track

4 pixel hits, 4 strip hits created
3 pixel hits, 4 strip hits found and assigned

that’s an ok track, 
you got 7 out of 8, 

naive score = 7/8 = 0.875 

does a pixel hit weigh the same 
as a strip hit ? 

NOT if we want to measure primary 
particles !!!

your estimation of the particle origin 

Track ranking Another good track

Illustration: 
Track scoring, a good track with all but one hit assigned correctly, resulting in a slight mis-measurement of the impact parameter.
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particle origin

pixel detector

strip detector truth track
Another good track

found track
4 pixel hits, 4 strip hits created

4 pixel hits, 3 strip hits found and assigned

that’s an ok track, 
you got 7 out of 8, 

naive score = 7/8 = 0.875

does a hit at the end weigh the same 
as a strip hit ? 

NOT if we want to  
measure the momentum   

precisely !!!

Track ranking Another good track

Illustration: 
Track scoring, a good track with all but one hit assigned correctly, resulting in a slightly wrong momentum estimation,.
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particle origin

pixel detector

strip detector truth track
found track

4 pixel hits, 4 strip hits created
4 pixel hits, 4 strip hits found 

2 wrongly associated

that’s not very good 
you got 6 out of 8, 

naive score = 6/8 = 0.75

your track is rather distorted 

did you really measure the particle ?

Track ranking A distorted track

Illustration: 
Track scoring, a rather distorted track. Is this still good ?
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particle origin

pixel detector

strip detector truth track
found track

4 pixel hits, 4 strip hits created
4 pixel hits, 4 strip hits found 

randomly associated (3 associated)

that’s garbage 
you got 3 out of 8, 

naive score = 3/8 = 0.375

your track is a ghost  

that should not even give you a score ! 
in fact, it should count as score = -1

Track ranking A ghost (fake) track
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nhits, nholes, chi2, cluster feature, etc … nhits, nholes, chi2, cluster feature, etc …

BDT, NN

Illustration: 
Track scoring as a classification problem.
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ML Track classification
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Track classification is a perfect playing field for ML  
- supervised learning application 
- ATLAS had a ML based scoring in early 2000s (never used in production)   

Fake/ghost track identification 
- so called “fake killer” from LHCb 
- NN implementation  based on hit and hole statistics

HLT1 has 25k physical cores (>50k logical cores) and access to all raw data, 
but cannot afford to do full event reconstruction. Choose to do charged-
particle tracking with a threshold of pT > 0.5 GeV (included PV making).

HLT1

17

LHCb builds VELO segments first, then extends these to the next station, then 
beyond the B field to the final station before Kalman filtering all tracks. 
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https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5410,Y
Source: 
Mike Williams, 

https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5410,Y
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Track classification is a perfect playing field for ML  
- supervised learning application 
- ATLAS had a ML based scoring in early 2000s (never used in production)   

Fake/ghost track identification 
- so called “fake killer” from LHCb 
- NN implementation  based on hit and hole statistics

Fake-Track Killer

ML for fake track probability

21
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Fake track probability based on TMVA NN (CE estimator), most important features are hit 
multiplicities and partial chi2 information in different tracking subdetectors. Main 
timing cost network evaluation, custom activation function for speed. Extensive use of 
code profiling and autovectorization to optimize the .C output of TMVA for speed.

De Cian et al. 
LHCb-PUB-2017-011

Fake-track-killing neural network, most important features are hit multiplicities 
and track-segment chi2 values from tracking subsystems. 

Run in the trigger on all tracks, so must be super fast. Use of custom 
activation function and highly-optimized C++ implementation (ROOT’s TMVA 
package provides stand-alone C++ code to run the trained algorithm). 

LHCb-PUB-2017-011

18
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Mike Williams, 
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Track classification is a perfect playing field for ML  
- supervised learning application 
- ATLAS had a ML based scoring in early 2000s (never used in production)   

Also, µ/p vs pion identification 
- single hidden layer NN trained to perform PID classification

32

PID NNs
Single-hidden-layer NN trained on 32 features from all subsystems. Each is 
trained to identify a specific type of particle (or fake track). 

Typically get a factor of 3x less pion contamination in a muon sample than 
using the CombDLL approach — 10x less in a dimuon sample.
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Figure 42: Electron identification performance using the �logLcomb(e� ⇡) variable, as measured
in 8TeV collision data, using a tag and probe technique with electrons from the decay B± !
(J/ ! e+e�)K±. Left, pion misidentication rate versus electron identification probability when
the cut value is varied. Right, electron identification e�ciency and pion misidentification rate as
a function of track momentum, for two di↵erent cuts on �logLcomb(e� ⇡).
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Figure 43: Background misidentification rates versus muon (left) and proton (right) identification
e�ciency, as measured in the ⌃+ ! pµ+µ� decay study. The variables �logL(X�⇡) (black) and
ProbNN (red), the probability value for each particle hypothesis, are compared for 5� 10GeV/c
muons and 5 � 50GeV/c protons, using data sidebands for backgrounds and Monte Carlo
simulation for the signal.

If the tracks identified as muons are also required to satisfy a selection using the combined
PID information (�logLcomb(K � ⇡) < 10 and �logLcomb(µ� ⇡) > �5), the B0

(s) ! h+h�

misidentification probability is reduced by a factor of ⇠ 6, whilst only ⇠ 3% of the
Bs ! µ+µ� signal is lost.

The possible improvement of the multivariate approach with respect to the simple log
likelihood may also be illustrated by the ongoing search for the flavour-changing neutral
current decay ⌃+ ! pµ+µ�. In Figure 43 the misidentification rates versus e�ciency curves

57

Currently exploring state-of-the-art: XGBoost ~ Deep NN ~ 50% less BKGD 
than basic BDT or ANN, which again give 2-3x less BKGD than DLLs.

https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5410,Y
Source: 
Mike Williams, 

https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5410,Y
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Illustration: 
Hits created by a particles jet in a simplified tracking detector, transverse view (left). Illustration of cluster merging (right).
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the charge-weighted approach :

charge collected in cell i
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ATLAS pioneered a solution for identifying and eventually even 
split shared clusters 

- training an artificial neural network (ANN) with test data from Monte Carlo 
simulation 

- output interpreted as an a posteriori probability  
- second set of ANN to estimate particle intersections with sensor & error

7x7 pixel 
charge matrix

49 input  
nodes

2 hidden 
layers

2 output 
layers

cluster compatible 
with 1 particle

cluster compatible 
with 2 and more particles

See: 
The optimization of the ATLAS Track Reconstruction in Dense environments, ATLAS-PHYS-PUB-2015-006
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See: 
The optimization of the ATLAS Track Reconstruction in Dense environments, ATLAS-PHYS-PUB-2015-006
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Figure 9: The average e�ciency to reconstruct primary tracks with a production vertex before the first layer in jets as
a function of jet pT. The same sample generation, with limited statistics, is used for both reconstruction algorithms
resulting in correlated features. Two track reconstruction algorithms are shown: green triangles label the baseline
reconstruction (Section 3) and red squares label the TIDE optimized reconstruction (Section 5).

The same e�ect drives the reconstruction e�ciency decrease towards the core of a jet in fully simulated
samples. The problem is exacerbate in b-jets due to the displaced decay of heavy-flavour quarks. In all
cases the new (TIDE) reconstruction provides an improvement. An approximate 17% e�ciency gain is
seen for charged particles created at a radius of 30 mm as well as a 10% (14%) improvement in the core
of high pT light (b) jets.

7 Impact on Flavor Tagging

Jet-flavour tagging exploits the lifetime of b-quarks through the measurement of lifetime via track impact
parameters or the identification and properties of displaced vertices [18]. Several taggers optimized for the
di�erent means of identification are combined in a multivariate technique. The impact parameter resolution
is likely to degrade if the innermost measurement is missing or shared. In Run I, impact-parameter-based
taggers considered only tracks with a cluster on the innermost layer. Therefore, this type of tagger will
profit from increasing the number and precision of innermost clusters on track. Secondary vertex taggers
employ multivariate discriminants using vertex properties. Such variables include the secondary vertex
mass, the vertex energy fraction or the momentum of the tracks in the vertex compared to all tracks
considered by the discriminant, and the secondary vertex momentum. Increasing the e�ciency for highly
collimated track pairs improves the secondary vertex e�ciency. Also, since the collimated tracks carry a
considerable fraction of the charged-particle momentum, the vertex energy fraction and vertex momentum
become more discriminant.

15

ATLAS pioneered a solution for identifying and eventually even 
split shared clusters 

- regains almost flat reconstruction efficiency in jet cores  
- similar performance on data although trained on MC 
- what will happen with significant radiation damage in the silicon ?
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Special event topologies may need dedicated track reconstruction 
- those are usually more 

CPU intensive 
- not feasible to run them 

on full scan event 

Potential 
- can we use ML to  

classify regions ?

run dedicated  
displaced vertex 
tracking in this region: 
- allow for large impact parameter 
- allow for less hits on track  
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Convolutional Neural Networks (CNNs) 

- for track reconstruction ?

Figure 1. A possible interpretation of convolutional neural networks applied to 2D tracking data.

attention mechanisms [16–18], giving the models the capability to focus on particular parts of the
input or intermediate feature representations to produce a desired output.

Such rich learned representations have also proven highly beneficial for tracking-based problems
in non-HEP applications, such as sports analytics and computational neuro-science. For instance,
[19] uses attention-based LSTMs to learn hierarchical models of basketball player behavior from
tracking data, while [20] applies recurrent neural networks to generate realistic fruit-fly behavior and
handwriting.

4 Datasets

Simple toy datasets were used to study and demonstrate the ideas discussed in this paper. The "detec-
tors" are made of perfect pixel planes in 2D or 3D. Tracks are sampled from straight lines contained
within the detector volume, and binary hits are recorded in each intercepting discrete pixel on each
layer. No trajectory curvature, material effects, or detector inefficiencies are modeled. These toy
datasets are highly simplistic compared to real tracking detector data, which means that quantitative
results are likely not indicative of algorithm performance in realistic scenarios. Nonetheless, this sim-
ple toy data provides a useful environment to test out various models. Figure 2 shows example 2D
data generated with tracks as well as uniform noise. Figure 3 shows an example 3D event.

For the experiments described in section 5, the following data configurations were used. 2D toy
experiments used one million 2D events with 50 detector layers of 50 pixels each, one signal track,
and five background tracks for training. The 3D toy experiments used a detector with 10 layers and
50 × 50 pixels in each layer. Events were generated with a random number of background tracks
sampled from a Poisson distribution with mean values varied from 1 to 100. At each point, five
million events were generated for training and one hundred thousand events for testing.

5 Track finding with LSTMs and CNNs

The goal of this line of study is to identify models which can do the assignment of pixel hits to a track
candidate by extrapolating from a partial track (a seed) through detector layers. When considering a
single track at a time, the problem can be formulated as one of multi-class classification. The pixels in
one detector layer make up the possible "classes", and the model must identify which one is traversed
by the target track candidate. Modeling of track dynamics can be handled by LSTMs or CNNs.

A basic LSTM model for 2D track finding is shown in figure 4. This model consists of an LSTM
layer which reads the input pixel arrays and a single fully-connected layer which is applied separately
to each LSTM output to produce the pixel predictions for the same detector layer. The seed is specified

    
 

DOI: 10.1051/, 00003 (2017) 715001EPJ Web of Conferences 50 epjconf/201 0003

4

Connecting The Dots/Intelligent Trackers 2017

See: 
Farrel S. et al, The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking, EPJ Web of Conferences 150, 00003 (2017) 
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Recurrent Neural Networks (RNNs) 
- e.g. Long Short Term Memory (LSTM) network 
- state estimator very similar to the Kalman filter: 

single fully connected (FC) layer with activation, 
uses input to update hidden state that can be used for prediction on target layer,  
i.e. it predict which pixel belongs to the track 

3210

LSTM LSTM LSTM LSTM

FC FC FC FC

Input detector layer
arrays

Target track

Output detector layer
predictions

Target track
3210

Figure 4. The basic LSTM model architecture used to classify hits for one track. The LSTM and a fully-
connected layer with a softmax activation read the pixel arrays and predict which pixels belong to the target
track.

Figure 5. LSTM model input (left) and prediction (right) for an example with one target track and five back-
ground tracks. The first five detector layers are used to specify the target track seed. In the prediction, darker
values mean greater confidence.

happens when a ten-layer convolutional model with no down-sampling and filter size (3×3) is applied
to a fifty-detector-layer toy dataset. The extrapolation reach of the model is limited by the number of
convolutional layers, illustrating a potential limitation of this kind of architecture. One way to combat
this is by introducing pooling layers which down-sample the data and allow to combine information
across the entire image. It is then necessary to introduce up-sampling and additional convolutional
layers to recover the track prediction at the original image size. This is essentially an autoencoder
model which tries to reconstruct a subset of its input. An example input and output after training such
a model is shown in figure 8.
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happens when a ten-layer convolutional model with no down-sampling and filter size (3×3) is applied
to a fifty-detector-layer toy dataset. The extrapolation reach of the model is limited by the number of
convolutional layers, illustrating a potential limitation of this kind of architecture. One way to combat
this is by introducing pooling layers which down-sample the data and allow to combine information
across the entire image. It is then necessary to introduce up-sampling and additional convolutional
layers to recover the track prediction at the original image size. This is essentially an autoencoder
model which tries to reconstruct a subset of its input. An example input and output after training such
a model is shown in figure 8.
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seed layers
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Upcoming Tracking challenge hosted on kaggle 
- training and test dataset for a mockup detector in HL-LHC environment 

particle properties (ID and kinematics) 
created hits and features  
link map <{hit,feature}, particle ID} 

- provide scoring function to rate potential solutions

Illustration: 
Botton left: simulated event with very high event pileup (μ = 1000) showing only particles with transverse momentum higher than 250 MeV. 

Stage 1 - Feb/Mar 2018: 
optimise track finding score 

Stage 2 - Q2/3 2018: 
optimise track finding time 
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detector geometry 
planar barrel/EC type detector 

pixel/strip system

simulation 
with the possibility to 

simplify where possible

event data 
easily readable, 

platform independent

visualisation 
of geometry, 

hits & found tracks

well defined goal 
what is success  

and how we measure it

different categories 
for different  

solutions
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Track reconstruction is a natural playing field for ML/DS 
- it’s also not new to our field 

(we may just have labeled it differently) 
- unsupervised learning: clustering 
- supervised learning: classification 
- interference  

Recent boost in ML 
- we should (and will) profit from it 
- we will have to learn some new 

language (AuC vs. Integral) 

Watch out for the Tracking  
ML challenge on kaggle 
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Charged particle trajectory parameterisation 
- five parameters needed to describe a trajectory localisation on a surface

local position on surface
momentum
charge

lx

ly

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q = (l1, l2,�,�, q/p) (2)

The CDF choice:
q = (l1, l2,�, cot(✓), C) (3)

1
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lx

ly

Obviously, every measurement has associated errors

Formulas

A. Salzburger

July 30, 2014

Abstract
This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q00
= (l1, l2,�, cot(✓), C) (3)

The LHCb choice:

q000
= (x, y, tx, ty, q/p) (4)
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tx(y) =
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momentum
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Formulas
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Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q = (l1, l2,�,�, q/p) (2)

The CDF choice:
q = (l1, l2,�, cot(✓), C) (3)
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Hough transform 
- transform your track hits in the x, y space
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a classical least squares estimator problem !
with

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k ,

Ck = Fk !iCiFk !i
T , "4#

where C is the covariance matrix and Fk !i is the Jacobian
matrix of the propagation from layer i to k ,

Fk !i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model h k describes the functional
dependence of the measured quantities in layer k , mk ,
on the state vector at the same layer,

mk = h k "qk # . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk !i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k ,

mk = d k "q0# + !k , "8#

where d k is a composition of the measurement model
function mk = h k "qk # and the track propagator functions

d k = h k ! fk !k −1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk . A linear estimator requires a linearized
track model, and for this the Jacobian Dk of d k is
needed,

Dk = Hk Fk !k −1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk , the functions d k , the Jacobians

Dk , and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d 1

]
d n
%, D = $D1

]
Dn

%, ! =$!1

]
!n
%,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d "q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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in reality the particle gets deflected by material 
- multiple coulomb scattering 
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‣ every layer is a material layer 
- creates a computational problem:  

matrix inversion of huge matrix to find the 
χ2  minimum
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Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook
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Track fitting: Traditional approach

Prediction and filter step

z

x

z = zk�1 z = zk

surface k � 1 surface k

filtered state
xk�1|k�1

scattering matter
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ACAT 2010 R. Frühwirth Track and vertex reconstruction 37



Track fitting  Kalman filter expressed in maths
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run the smoother from  k+1 to k
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
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The smoother can also be realized by combining two
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b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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where V=G−1 is the nondiagonal covariance matrix of
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If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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where V=G−1 is the nondiagonal covariance matrix of
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If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by
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The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
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The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
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surement,
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after layer k −1 up to and including layer k . The part of
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The update step corrects the predicted state vector by
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An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
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The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,
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where the smoother gain matrix is given by
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T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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where V=G−1 is the nondiagonal covariance matrix of
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If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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  mapping measurement covariances

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with smoother gain matrix Ak :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk −1#k −1 vector from
detector layer k −1 to the next layer containing a mea-
surement,

qk #k −1 = fk #k −1!qk −1#k −1" , !15"

as well as the associated covariance matrix,

Ck #k −1 = Fk #k −1Ck −1#k −1Fk #k −1
T + Qk , !16"

where Qk is the covariance matrix of multiple scattering
after layer k −1 up to and including layer k . The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k ,

qk #k = qk #k −1 + Kk $mk − h k !qk #k −1"% , !17"

where the gain matrix Kk is given by

Kk = Ck #k −1Hk
T!Vk + Hk Ck #k −1Hk

T"−1, !18"

and Vk is the covariance matrix of mk . The covariance
matrix is updated by

Ck #k = !I − Kk Hk "Ck #k −1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k +1
to layer k is for the state vector,

qk #n = qk #k + Ak !qk +1#n − qk +1#k " , !20"

where the smoother gain matrix is given by

Ak = Ck #k Fk +1#k
T !Ck +1#k "−1. !21"

The smoothed covariance matrix is

Ck #n = Ck #k − Ak !Ck +1#k − Ck +1#n "Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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Track reconstruction at the HL-LHC
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HL-LHC environment 
- Detector coverage to |η| < 4  

most particles are of low/mid 
momentum and heavily affected  
by detector material  

- Expected pile-up of <μ> ~ 200 
spread out over a luminous region

Illustration: 
Top right: momentum spectrum for charged particles inside the pseudo rapidity window of |η| < 4. 
Bottom right: transverse momentum spectrum of simulated particles, display cut, possible reconstruction cut.
Botton left: simulated event with very high event pileup (μ = 1000) showing only particles with transverse momentum higher than 250 MeV. 



Track ranking proposed setup
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Summary Particles in tracking detectors
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x

Figures: 
Longitudinal (left) and transverse (right) view of particles in a detector with material interactions.
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lost due to  hadronic interaction lost because of too low momentum
Figures: 
Longitudinal (left) and transverse (right) view of particles in a detector with material interactions.


