

Investigatinon of hadron collisions with angular correlations

Małgorzata Janik (for the ALICE Collaboration)

Spåtind 2018 2-7.01.2018

Two-particle ($\Delta \eta, \Delta \phi$) angular correlations

p - particle momentum;

 θ - polar angle;

 η - pseudorapidity:

$$\eta = -\ln\left(\tan\frac{\theta}{2}\right)$$

 $p_{\rm T}$ - transverse momentum; φ - azimuthal angle;

$(\Delta η, \Delta φ)$ angular correlations

One step further: identified particles!

Unexplored phenomena: **conservation laws** and their influence on **particle production mechanisms** – study via correlation functions for particles with **different quark content**

Pion:

Charge

Charge

Strange quark

Proton:

- Charge
- Baryon

	conservation laws			
particles	momentum	charge	strangeness	baryon number
pions	✓	√		
kaons	✓	\checkmark	\checkmark	
protons	✓	\checkmark		\checkmark

Useful to perform analysis in a more differential way:

- charge dependence

for unlike-sign pairs quantum numbers conserved: stronger correlation for like-sign pairs new particles need to be produced: weaker correlations

- identified particles

Data sample & analysis

- Kinematic cuts:
 - $0.2 < p_{_{
 m T}} < 2.5 \text{ GeV/}c \text{ for pions}$
 - $0.3 < p_{\tau} < 2.5 \text{ GeV/c for kaons}$
 - $0.5 < p_{\tau} < 2.5 \text{ GeV/c for protons}$
 - $0.7 < p_{\tau} < 2.5$ GeV/c for lambdas
 - $|\eta| < 0.8$

- ~200 million minimum bias pp collisions at 7 TeV collected by ALICE in 2010
- Tracking:
 - Inner Tracking System (ITS)
 - Time Projection Chamber (TPC)
- Particle identification:
 - TPC
 - Time-of-Flight (TOF)
 - A topology reconstruction

(Δη,Δφ) Experimental Correlation Function

Uncorrelated reference

Same event pairs

$$\Delta \eta = \eta_1 - \eta_2$$

$$\Delta \varphi = \varphi_1 - \varphi_2$$

Correlation function

Mixed event pairs

Comparison to MC models: like-sign

- The models reproduce reasonably well the angular correlations for mesons
- The models fail to reproduce the results for baryons they are able to produce 2 baryons close in the phase space
- Energy and local baryon-number conservation laws are implemented in all studied models not enough to explain the anti-correlation observed in experimental data

Comparison to MC models: unlike-sign

- The models reproduce reasonably well the angular correlations for mesons
- The models fail to reproduce the results for baryons they are able to produce 2 baryons close in the phase space, also baryon-antibaryon pairs have 2 x the magnitude for MC
- Energy and local baryon-number conservation laws are implemented in all studied models not enough to explain the anti-correlation observed in experimental data

Not likely (checked with MC):

- Depletion is a simple manifestation of "local" baryon number conservation and energy conservation
 - Production of 2 baryons in a single mini-jet would be suppressed if the initial parton energy is small when compared to the energy required to produce 4 baryons in total (2 in the same mini-jet + 2 anti-particles)
 - fine at 29 GeV, PRL 57 (1986) 3140, but why at 7 TeV?!

Other possible explanations:

- Other baryons?
- Coulomb repulsion?
- Fermi-Dirac Quantum Statistics?
- Strong Final-State Interactions?

Other possible explanations:

- Other baryons?
- Coulomb repulsion?
- Fermi-Dirac Quantum Statistics?
- Strong Final-State Interactions?

Study A correlations

AA correlation functions

- Useful to check if effect persists for other baryons than protons is this a common effect for all baryons?
- Correlation functions were calculated for pairs
- ↑ baryons are neutral → no Coulomb repulsion
- ◆All observations from pp can be extended to ∧∧

2-7/01/2018, Spåtind 2018

Other possible explanations:

- Other baryons?
- Coulomb repulsion?
- Fermi-Dirac Quantum Statistics?
- Strong Final-State Interactions?

Study p/ correlations

AA and p**A** correlation functions

- Useful to check if effect persists for other baryons than protons – is this a common effect for all baryons?
- Correlation functions were calculated for ∧∧ and p∧ pairs
- ↑ baryons are neutral → no Coulomb repulsion
- p and Λ are not identical → no effect from Fermi-Dirac statistics
- ◆All observations from pp can
 be extended to ∧∧ and p∧

Comparison between pp, pΛ, ΛΛ

like-sign arXiv:1612.08975 unlike-sign

The shape of the correlation function for all studied baryon-baryon pairs is similar, regardless of particles' electric charge or quantum effects.

The observed depression is a characteristic attribute connected to the baryon number of the studied particles?

Other possible explanations:

- Other baryons?
- Coulomb repulsion?
- Fermi-Dirac Quantum Statistics?
- Strong Final-State Interactions?

Several possible explanations checked and ruled out

$(\Delta \eta, \Delta \phi)$ of identified particles of pp collisions

protons

ALICE exp data

$(\Delta \eta, \Delta \phi)$ of identified particles of pp collisions

protons

ALICE exp data

MC only mom.

Toy Monte Carlo Events with momentum conservation only

Strong suppression of any other effects? What is the underlying mechanism?

Summary

- Correlation studies allow us to investigate a wide range of physics phenomena
- Still new mysteries to solve

Baryon-baryon correlations not reproduced by MC models:

- Pythia6
- Pythia8
- Phojet
- EPOS
- HERWIG

No explanation found so far

Backup

Minima in $\langle R_2 \rangle$ of protons around $\Delta y=0$ at all beam energies

Point at $\Delta y=0$ reflects combination of SRC and the removal of track merging effects STAR ☆

S. Jowzaee, Quark Matter 2017

26/24

Other possible explanations:

- Other baryons?
- Coulomb repulsion?
- Fermi-Dirac Quantum Statistics?
- Strong Final-State Interactions?

Study femtoscopic correlation

Other possible explanations:

- Other baryons?
- **Coulomb repulsion?**
- Fermi-Dirac Quantum Statistics?
- Strong Final-State Interactions?
 - Femto correlation produces spike at $(\Delta \eta, \Delta \phi) = (0,0)$
 - FSI cannot produce observed anti-correlation

Other possible explanations:

- Dependence on p_T range?
- Coulomb repulsion?
- Other baryons?
- Fermi-Dirac Quantum Statistics?
- Strong Final-State Interactions?

Protons

Protons

Proton correlations – transformation

- Direct transformation from $C(q_{inv})$ to $C(\Delta \eta \Delta \phi)$ not possible
- One can employ a simple Monte Carlo procedure:
 - generate random η and φ from uniform distributions (for 2 particles: η₁, η₂, φ₁, φ₂)
 - generate random p_T from measured p_T distribution (for 2 particles: p_{T1} , p_{T2})
 - calculate k* from generated η₁, η₂, φ₁, φ₂, p_{T1} and p_{T2}
 - take the value of measured femtoscopic correlation function at given k* and apply it as weight while filling the numerator of $\Delta\eta\Delta\phi$

$(\Delta \eta, \Delta \phi)$ of identified particles of pp collisions

Pions

Comparison to MC models

arXiv:1612.08975

 The models fail to reproduce the results for baryons for all pair combinations

$(\Delta \eta, \Delta \phi)$ of identified particles in pp collisions

None of common MC models reproduces ALICE data!

Let's compare with models!

