Overview of 13 TeV H->WW*->IvIv analysis strategy in ATLAS

Edvin Sidebo PhD student

Introduction

- The Brout-Englert-Higgs mechanism provides mass to Standard Model particles
 - Mass the only free parameter.
 Discovered at ~125 GeV during
 LHC run 1 by ATLAS and CMS
- We have entered the precision measurement phase
 - What are the particles' properties? CP, couplings...
- I'm working on the H → WW → ℓνℓν ATLAS analysis which will soon be published

Run1 overview

- Higgs-vector boson couplings well established (goes as m_V²)
- Higgs-fermion couplings also observed (goes as m_f)
- Production modes and decay modes measured to agree with SM within ~30%
- Available run 2 results also agree with SM (see e.g. <u>LianTao</u> <u>Wang@LeptonPhoton2017</u>)

No observed deviations from the SM

Higgs production

"vector boson fusion": rarer (7% of total), but clean final state topology (more later)

Higgs decay

- "Lucky" that mass value maximises all available production modes
- In ZZ and yy we can reconstruct final state fully, and compute mass with full resolution
- WW second to most probable

mass measurement.

- We consider only leptonically decaying W:
 H → WW → ℓνℓν.
 Neutrinos prohibit accurate
- However directly sensitive to Higgs-W coupling

What we measure is the product, normalised to SM prediction.

$$\mu = (\sigma \times BR) / (\sigma \times BR)_{SM}$$

called "signal strength"

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ analysis

- How to tag two Ws? Consider only final states with different flavour, opposite sign leptons (not counting τ which decays hadronically)
 - Require leptons with high enough energy and "missing transverse energy" from neutrinos
- What backgrounds have the same signature?

 These two backgrounds largely determine analysis strategy

10

 $H \rightarrow WW$

Top quarks accompanied by (b-)jets — divide in
 bins of number of jets

gluon-gluon fusion analysis

Require "b-veto" on jet to suppress top quark background

In H → WW → ℓνℓν...

angular momentum conservation
+ chirality of weak interaction
→ leptons tend to be collimated

Require small opening angle between electron and muon

Vector boson fusion analysis

- Naturally produces two highenergy jets in forward regions
 - without colour flow between them (no hadronic activity)
- Clean final state which is sensitive to Higgs-W/Z coupling

Signature: two forward jets with Higgs decay products in between

- Event selection:
 - Require two high-energy jets with large rapidity gap
 - Suppress central jet activity
 - Require leptons to be between the tagged jets in rapidity

Dominant background: **top quark events.**Require b-veto on additional jets

Event and object selections

- Select events with single- and dilepton triggers
- We require leptons to be of high quality. Why?
- W+jets give rise to "fake" lepton background when a jet is misidentified as a lepton

Important to have W+jets fake background under control

Background estimation

Measure normalisation α = data/MC in Control Regions. Shape taken from MC.

WW Control Region requirements to enhance purity

b-veto, high di-lepton invariant mass

Signal Region

Extrapolate with α

Top Control Region

Z →ττ Control Region b-tag

No missing energy cut, large di-lepton opening angle

Taken from MC, validate yield and shape in validation region

Non-WW Diboson (Vy, ZZ, WZ)

"fake" lepton background, data driven estimate

W+jets
Control Region

Fit procedure

gluon-gluon fusion analysis

- cut-based
- signal region in previous slide in reality made up of 16 regions (based on number of jets, e-µ invariant mass, ...)
- Binned likelihood fit to transverse mass distribution, simultaneously using signal and control regions

vector-boson fusion analysis

- Multi-variate treatment: Boosted Decision Tree (BDT) discriminant.
- Fit to the four bins in the BDT output

run 1

Systematic uncertainties

- Systematic uncertainties enter the likelihood fit as Gaussian terms with a nuisance parameter. The different sources of uncertainties are
 - Experimental systematics (pile-up reweighting, luminosity, jet energy scale and resolution...)
 - Theoretical uncertainties (matrix element, renormalisation/ factorisation scale, parton shower...)
 - W+jets fake background systematics

Over 100 individual contributions of systematic uncertainties

The dominant ones are WW theory uncertainties and W+jets fake background uncertainties

The vector boson fusion measurement is also limited by data statistics

Summary and outlook

- The 13 TeV ATLAS H \to WW $\to \ell\nu\ell\nu$ cross section measurement strategy has been outlined
 - We hope to publish soon with 36/fb
 (2015+2016) dataset. Currently going through internal review process...
 - Personal focus has been on fake lepton backgrounds.

First gluon-gluon fusion results at 13 TeV.
Stay tuned!

Outlook

- After publication, focus will shift toward run 2 legacy paper
- Will contain ~3.5x the amount of data compared to coming publication

Extra

и VBF/VH

CMS run2 15/fb results

HIG-16-021

	J	
ζ	ת	
C	2	
	_	
ς <	J	
	•	

category	significance	$\sigma/\sigma_{ m SM}$
0-jet	2.7 (2.9)	$0.9 ^{+0.4}_{-0.3}$
1-jet	2.1 (2.5)	$1.1 \ ^{+0.4}_{-0.4}$
2-jet	2.0 (1.0)	$1.3 {}^{+1.0}_{-1.0}$
VBF 2-jet	2.2 (1.5)	$1.4 \ ^{+0.8}_{-0.8}$
VH 2-jet	1.0 (0.4)	$2.1 ^{\ +2.3}_{\ -2.2}$
WH 3-lep	0.0 (0.5)	-1.4 $^{+1.5}_{-1.5}$
combination	4.3 (4.1)	1.05 +0.27 -0.25

Extra

ATLAS VBF and VH results 5.8/fb

ATLAS-CONF-2016-112

$$\mu_{\text{VBF}} = 1.7^{+1.0}_{-0.8}(\text{stat})^{+0.6}_{-0.4}(\text{sys})$$

$$\mu_{WH} = 3.2^{+3.7}_{-3.2}(\text{stat})^{+2.3}_{-2.7}(\text{sys})$$