UNIVERSITY OF BERGEN

Department of Physics and Technology

Separating heavy Higgses using machine learning

Anders Kvellestad Steffen Maeland Inga Strümke

January 3, 2018

Theoretical motivation

- In the Standard Model, we have one scalar $\mathsf{SU}(2)$ doublet $\Phi,$ and the Higgs potential

$$V_{H} = \mu^{2} \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^{2}$$
⁽¹⁾

with

• 3 d.o.f. to be absorbed by
$$W^{\pm}$$
 and Z^{0}
 $\Phi \sim \begin{pmatrix} \eta_{1}(x) + i\eta_{2}(x) \\ v + \sigma(x) + i\eta_{3}(x) \end{pmatrix}$
(2)
• 1 Higgs boson *h* and VEV *v*

Theoretical motivation

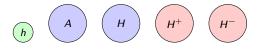
- Add an SU(2) doublet, call it a Higgs, and we have Φ_1 and Φ_2 and a much larger $V_{H}.$

$$\Phi = \Phi_1 + \Phi_2 \sim \begin{pmatrix} \phi_{11}(x) + i\phi_{12}(x) \\ \phi_{13}(x) + i\phi_{14}(x) \end{pmatrix} + \begin{pmatrix} \phi_{21}(x) + i\phi_{22}(x) \\ \phi_{23}(x) + i\phi_{24}(x) \end{pmatrix}$$
(3)

- + 3 d.o.f. must still be absorbed by W^{\pm} and Z^0
- 1 Higgs boson h and VEV v
- 4 d.o.f. left! \Rightarrow 4 new Higgs bosons *H*, *A*, *H*⁺ and *H*⁻.

Theoretical motivation

- Two Higgs doublet model (2HDM)
- A total of five physical states:
 - One light scalar *h*, this one we know \bigcirc
 - Two charged ones, which are easily separable \bigcirc \bigcirc
 - Two neutral ones, A and H, which have opposite charge under CP \bigcirc \bigcirc
 - Expect some mass-degeneracy among the heavy states
 - After EWSB: v sets scale for SM-like Higgs, one mass parameter left (m_{12}^2)
 - Heavy states are split by mass contributions $\sim \lambda_i v$
 - Large mass splittings possible at tree-level through fine-tuned cancellations among the $\lambda_i{\rm 's}.$
 - Cancellations spoiled by loop corrections.

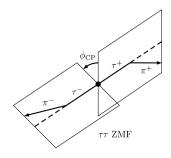


The measurement

- Typical searches (ATLAS [1], CMS [2]) look for any particle decaying to ditaus, but don't attempt to distinguish them [1] CERN-EP-2016-164, [2] CMS PAS HIG-13-021
 - ... mainly because it's difficult. No direct access to the CP numbers
 - Miss out on vital information this way
- · Look at the decay

$$A/H \to \tau\tau \to \pi^+ \pi^0 \nu \, \pi^- \pi^0 \nu \tag{4}$$

• One angle of particular importance: Angle between decay planes



Conventional method

- Use φ^* observable [3] ArXiv:1510.03850
- One-dimensional template fit to φ^* distribution

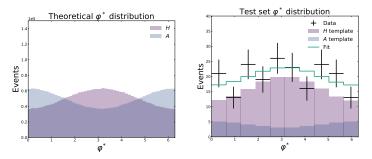
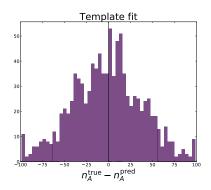


Figure: Theoretical and test set φ^* distributions, $m_A = m_H =$ 450 GeV

• Find n_A and n_H , i.e. measure cross section times branching ratio for the two

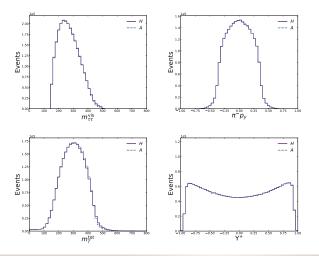
Conventional method

- Using φ^* method on 200 test sets



ML method

• Feature distributions

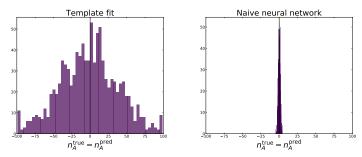


Neural network

- Implemented a fully-connected feed-forward neural network in Keras and TensorFlow
- Leaky ReLu activation functions, Adam optimiser, batch normalisation included
- + Use 2-4 hidden layers with \sim 300 nodes each
- · Not the easiset problem ever attempted with machine learning
 - Extremely overlapping feature distributions, no single 'killer' feature. Need to rely on correlations
 - Achieve up to \sim 0.63 ROC AUC

ML vs conventional method

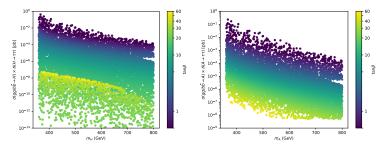
• Again, 200 test sets each



• Not sure whether to publish in Science or Nature

Too good to be true classification?

- Yes.
- Train set disctribution depends on theory parameters

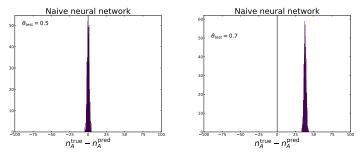


• \Rightarrow Can't make a train set without making assumptions about the theory!

Too biased to be good classification.

• Define
$$\theta = \frac{n_A}{n_A + n_H}$$
, $\theta \in [0, 1]$.

• Evenly distributed train set has $\theta_{\rm train}=0.5$



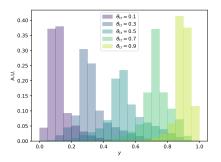
 Very overlapping features ⇒ all points lie close to decision surface ⇒ very strong prior dependence.

12 / 25

uib.no

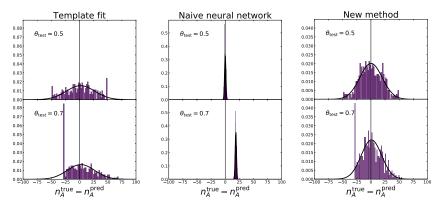
Get rid of bias...

- Train as many networks as you want for different $heta_{ ext{train}}=0.1, 0.2, \dots$
- Make a template for each $\theta_{\rm train}$



- Do a template fit on network output
- The network which achieves the best fit wins!

Get rid of bias...



De

PRELIMINARY

- $\sim 20\%$ improvement
 - 200 test sets with 100 events (that's not very much)
 - Not optimised network (Christmas went by so quickly)

UNIVERSITY OF BERGEN

Department of Physics and Technology

Questions

• Other classifiers tested, no immediate success

