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Theoretical motivation

• In the Standard Model, we have one scalar SU(2) doublet Φ, and the Higgs
potential

VH = µ2Φ†Φ + λ(Φ†Φ)2 (1)

with
• 3 d.o.f. to be absorbed by W± and Z0

Φ ∼

 η1(x) + iη2(x)

v + σ(x) + iη3(x)

 (2)

• 1 Higgs boson h and VEV v
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Theoretical motivation

• Add an SU(2) doublet, call it a Higgs, and we have Φ1 and Φ2 and a much larger
VH .

Φ = Φ1 + Φ2 ∼
(
φ11(x) + iφ12(x)
φ13(x) + iφ14(x)

)
+

(
φ21(x) + iφ22(x)
φ23(x) + iφ24(x)

)
(3)

• 3 d.o.f. must still be absorbed by W± and Z0

• 1 Higgs boson h and VEV v

• 4 d.o.f. left! ⇒ 4 new Higgs bosons H, A, H+ and H−.
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Theoretical motivation

• Two Higgs doublet model (2HDM)
• A total of five physical states:

• One light scalar h, this one we know
• Two charged ones, which are easily separable
• Two neutral ones, A and H, which have opposite charge under CP
• Expect some mass-degeneracy among the heavy states

• After EWSB: v sets scale for SM-like Higgs, one mass parameter left (m2
12)

• Heavy states are split by mass contributions ∼ λi v
• Large mass splittings possible at tree-level through fine-tuned cancellations among the

λi ’s.
• Cancellations spoiled by loop corrections.

h
A H H+ H−
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The measurement
• Typical searches (ATLAS [1], CMS [2]) look for any particle decaying to ditaus,
but don’t attempt to distinguish them [1] CERN-EP-2016-164, [2] CMS PAS HIG-13-021

• ... mainly because it’s difficult. No direct access to the CP numbers
• Miss out on vital information this way

• Look at the decay
A/H → ττ → π+π0ν π−π0ν (4)

• One angle of particular importance: Angle between decay planes
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Conventional method
• Use ϕ∗ observable [3] ArXiv:1510.03850

• One-dimensional template fit to ϕ∗ distribution
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Figure: Theoretical and test set ϕ
∗ distributions, mA = mH = 450 GeV

• Find nA and nH , i.e. measure cross section times branching ratio for the two
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Conventional method

• Using ϕ∗ method on 200 test sets
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ML method

• Feature distributions
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Neural network

• Implemented a fully-connected feed-forward neural network in Keras and
TensorFlow

• Leaky ReLu activation functions, Adam optimiser, batch normalisation included
• Use 2-4 hidden layers with ∼ 300 nodes each

• Not the easiset problem ever attempted with machine learning
• Extremely overlapping feature distributions, no single ’killer’ feature. Need to rely on

correlations
• Achieve up to ∼ 0.63 ROC AUC
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ML vs conventional method

• Again, 200 test sets each
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Naive neural network

• Not sure whether to publish in Science or Nature
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Too good to be true classification?

• Yes.
• Train set disctribution depends on theory parameters
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• ⇒ Can’t make a train set without making assumptions about the theory!
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Too biased to be good classification.

• Define θ =
nA

nA + nH
, θ ∈ [0, 1].

• Evenly distributed train set has θtrain = 0.5
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Naive neural network

• Very overlapping features ⇒ all points lie close to decision surface ⇒ very strong
prior dependence.
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Get rid of bias...

• Train as many networks as you want for different θtrain = 0.1, 0.2, . . . .
• Make a template for each θtrain
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• Do a template fit on network output
• The network which achieves the best fit wins!
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Get rid of bias...
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New method
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• ∼ 20% improvement
• 200 test sets with 100 events (that’s not very much)
• Not optimised network (Christmas went by so quickly)
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Questions
• Other classifiers tested, no immediate success
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