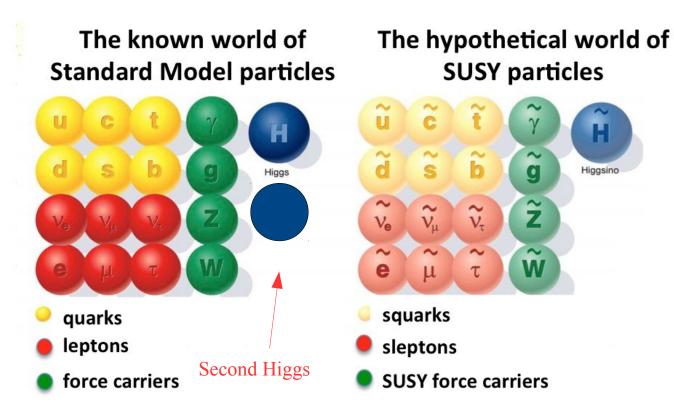

Thoughts about SUSY naturalness. ...and the SUSY WIMP...

Kai Schmidt-Hoberg

"SUSY anywhere is better than SUSY nowhere!"

Partially based on

1603.09347 1701.03480



SUSY → **MSSM** (this talk)

> A SUSY partner for each SM particle with Δs=1/2 with the same mass

- > SUSY broken in nature
- Breaking mechanism unknown, parameterized by soft terms

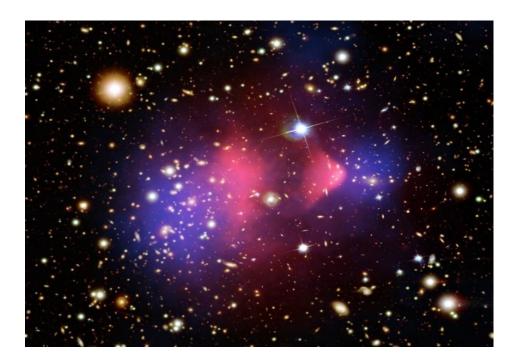
MSSM

Field content fixed: theory specified by superpotential and soft terms

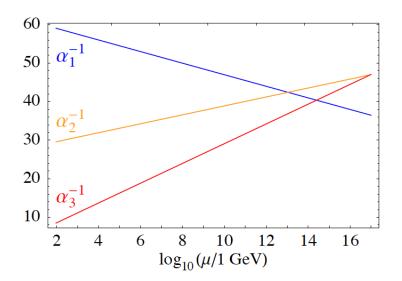

superfields
$$W_{ ext{MSSM}} = \overline{u}\mathbf{y_u}QH_u - \overline{d}\mathbf{y_d}QH_d - \overline{e}\mathbf{y_e}LH_d + \mu H_uH_d$$

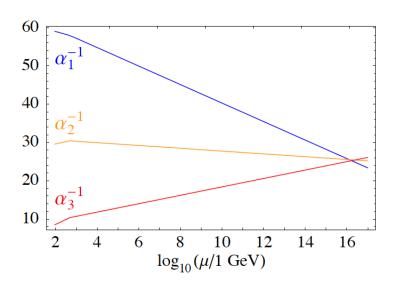
$$L_{SB} = -\frac{1}{2} \sum_{a} M_a \bar{\lambda}_a \lambda_a - \sum_{i} m_{\tilde{\Phi}_i}^2 |\tilde{\Phi}_i|^2 + T_u H_u \tilde{Q} \tilde{u} + T_d H_d \tilde{Q} \tilde{d} + T_e H_d \tilde{L} \tilde{e} + B_\mu H_u H_d$$

Many new parameters (>100) but likely not independent

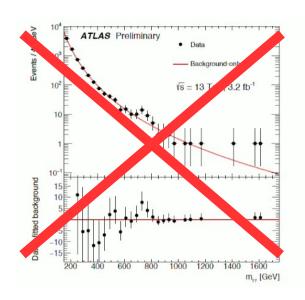


> Hierarchy problem: stabilizes the weak against the Planck scale

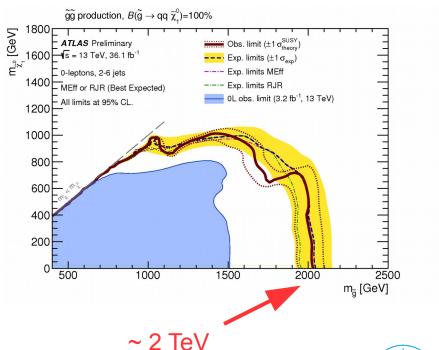



- Hierarchy problem: stabilizes the weak against the Planck scale
- Dark matter: If lightest SUSY particle stable → dark matter candidate

- Hierarchy problem: stabilizes the weak against the Planck scale
- Dark matter: If lightest SUSY particle stable → dark matter candidate
- Gauge coupling unification:


- Hierarchy problem: stabilizes the weak against the Planck scale
- Dark matter: If lightest SUSY particle stable → dark matter candidate
- Sauge coupling unification:
- A 125 GeV Higgs boson: Additional hint for SUSY?

...somebody still owes me...


- Hierarchy problem: stabilizes the weak against the Planck scale
- Dark matter: If lightest SUSY particle stable → dark matter candidate
- Sauge coupling unification:
- A 125 GeV Higgs boson: Additional hint for SUSY?
- > Also hard to get 750 GeV diphoton excess ;-)

- Hierarchy problem: stabilizes the weak against the Planck scale
- Dark matter: If lightest SUSY particle stable → dark matter candidate
- Gauge coupling unification:
- A 125 GeV Higgs boson: Additional hint for SUSY?

> So why do people get worried?

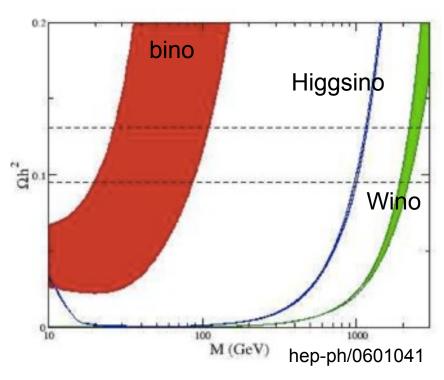
- Hierarchy problem: stabilizes the weak against the Planck scale
- Dark matter: If lightest SUSY particle stable → dark matter candidate
- Sauge coupling unification:
- A 125 GeV Higgs boson: Additional hint for SUSY?

So why do people get worried?

NATURALNESS!

DM naturalness in the MSSM

How naturally can the dark matter relic abundance be achieved?


Often universal gaugino masses assumed at high scale, at low scale M3:M2:M1 ~ 6:2:1 → bino LSP

Bino: Typically need to finely tune relic density via coannihilations or resonances :-(

2-3 TeV Wino challenged by ID

Mariengela Lisanti et al 1307.4082

1 TeV Higgsino looking good :-)

EW naturalness in the MSSM

- How naturally can we achieve the correct Higgs vev?
- Electroweak vev (or m_Z) determined by SUSY parameters (from minimization condition for scalar potential)

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \simeq -m_{H_u}^2 - \mu^2$$

- Cancellation (tuning) needed for large SUSY masses
- How to quantify this?

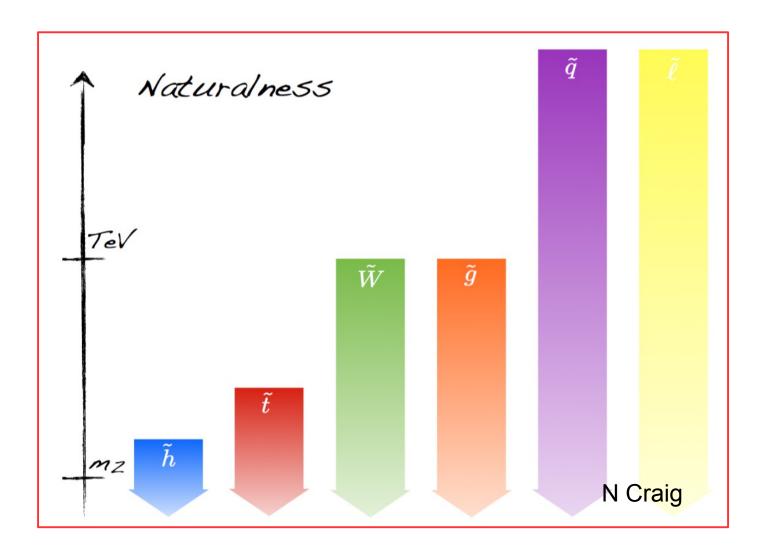
$$\Delta_p \equiv \frac{\partial \ln v^2}{\partial \ln p} = \frac{p}{v^2} \frac{\partial v^2}{\partial p}$$
 'sensitivity measure'

Large Δ implies large tuning

The usual story

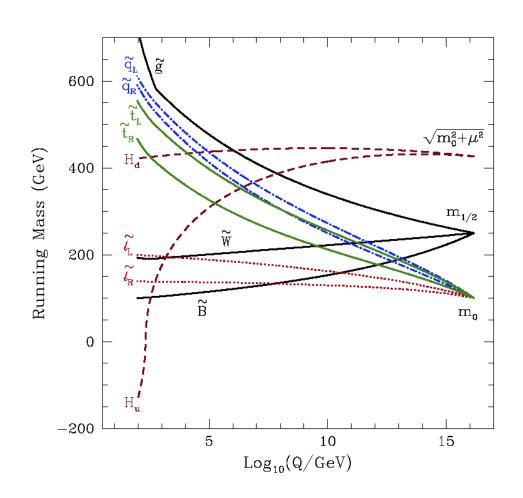
- What does this tell us about a natural SUSY spectrum?
- > μ is a superpotential parameter and hardly runs: $\mu_{EW} \sim \mu_{GUT}$

$$\Delta_{\mu} \sim \frac{2\mu^2}{M_Z^2}$$
 Higgsino mass ~ μ ~ 1 TeV \to Δ ~ 250


- "Natural SUSY requires light Higgsino"
- What about the m_{Hu} part?
- Loop effects introduce a large sensitivity to stop and gluino masses

$$\delta m_{H_u}^2 = -\frac{3y_t^2}{4\pi^2} m_{\tilde{t}}^2 \ln\left(\Lambda/m_{\tilde{t}}\right)$$

$$\delta m_{ ilde{t}}^2 = rac{2g_s^2}{3\pi^2} m_{ ilde{g}}^2 \ln{(\Lambda/m_{ ilde{g}})}$$


The 'natural SUSY' spectrum

High scale SUSY

- In many models SUSY breaking at high scale in hidden sector
- Often some universality
- Take into account running to predict SUSY spectrum at the electroweak scale.

EW naturalness in the MSSM – the GUT picture

Starting from the high scale, all soft terms contribute to m_{Hu} and m_Z

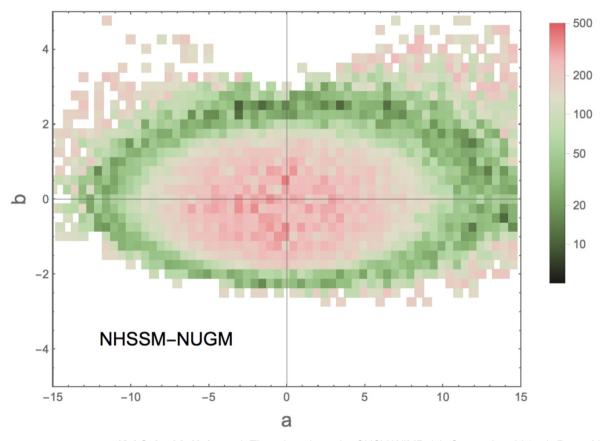
$$\begin{array}{ll} m_Z^2 &\simeq& -2.18\mu^2 + 3.84M_3^2 + 0.32M_3M_2 + 0.047M_1M_3 - 0.42M_2^2 \\ &+ 0.011M_2M_1 - 0.012M_1^2 - 0.65M_3A_t - 0.15M_2A_t \\ &- 0.025M_1A_t + 0.22A_t^2 + 0.004M_3A_b \\ &- 1.27m_{Hu}^2 - 0.053m_{Hd}^2 \\ &+ 0.73m_{Q_3}^2 + 0.57m_{U_3}^2 + 0.049m_{D_3}^2 - 0.052m_{L_3}^2 + 0.053m_{E_3}^2 \\ &+ 0.051m_{Q_2}^2 - 0.11m_{U_2}^2 + 0.051m_{D_2}^2 - 0.052m_{L_2}^2 + 0.053m_{E_2}^2 \\ &+ 0.051m_{Q_1}^2 - 0.11m_{U_1}^2 + 0.051m_{D_1}^2 - 0.052m_{L_1}^2 + 0.053m_{E_1}^2, \end{array}$$

> We don't just want m_{Hu} to be small, but every contribution to it. Assuming no correlations among the terms, need rather light stops and gluinos

EW naturalness in the MSSM – the GUT picture

Starting from the high scale, all soft terms contribute to m_{Hu} and m_Z

$$\begin{split} m_Z^2 &\simeq -2.18\mu^2 + 3.84M_3^2 + 0.32M_3M_2 + 0.047M_1M_3 - 0.42M_2^2 \\ &+ 0.011M_2M_1 - 0.012M_1^2 - 0.65M_3A_t - 0.15M_2A_t \\ &- 0.025M_1A_t + 0.22A_t^2 + 0.004M_3A_b \\ \hline -1.27m_{H_u}^2 - 0.053m_{H_d}^2 \\ &+ 0.73m_{Q_3}^2 + 0.57m_{U_3}^2 + 0.049m_{D_3}^2 - 0.052m_{L_3}^2 + 0.053m_{E_3}^2 \\ &+ 0.051m_{Q_2}^2 - 0.11m_{U_2}^2 + 0.051m_{D_2}^2 - 0.052m_{L_2}^2 + 0.053m_{E_2}^2 \\ &+ 0.051m_{Q_1}^2 - 0.11m_{U_1}^2 + 0.051m_{D_1}^2 - 0.052m_{L_1}^2 + 0.053m_{E_1}^2 \end{split} \qquad \text{\sim0.01 m}_0^2 \end{split}$$

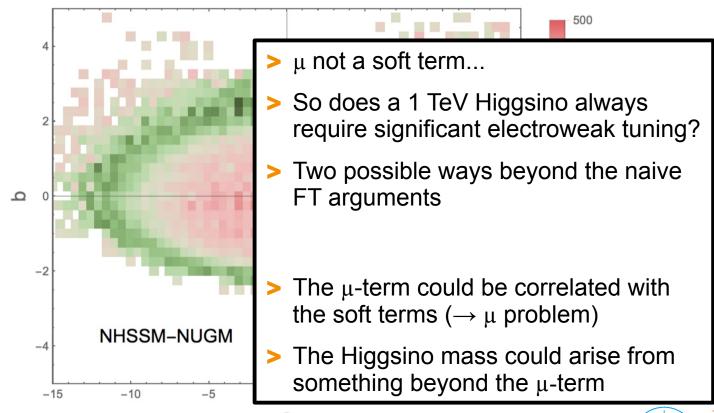

- > We don't just want m_{Hu} to be small, but every contribution to it. Assuming no correlations among the terms, need rather light stops and gluinos
- But we know correlations should be present...
- Example: the scalar focus point.

The gaugino focus point

- Assume fixed ratios of gaugino masses
- > Possible also in GUTs Horton, Ross, 0908.0857

$$M_1 = a \cdot m_{1/2}$$

 $M_2 = b \cdot m_{1/2}$
 $M_3 = m_{1/2}$



The gaugino focus point

- Assume fixed ratios of gaugino masses
- Possible also in GUTs Horton, Ross, 0908.0857

$$M_1 = a \cdot m_{1/2}$$
 $M_2 = b \cdot m_{1/2}$
 $M_3 = m_{1/2}$

erc

A new contribution to the Higgsino mass

Non-standard SUSY breaking terms (in the classification of S Martin: 'maybe-soft')

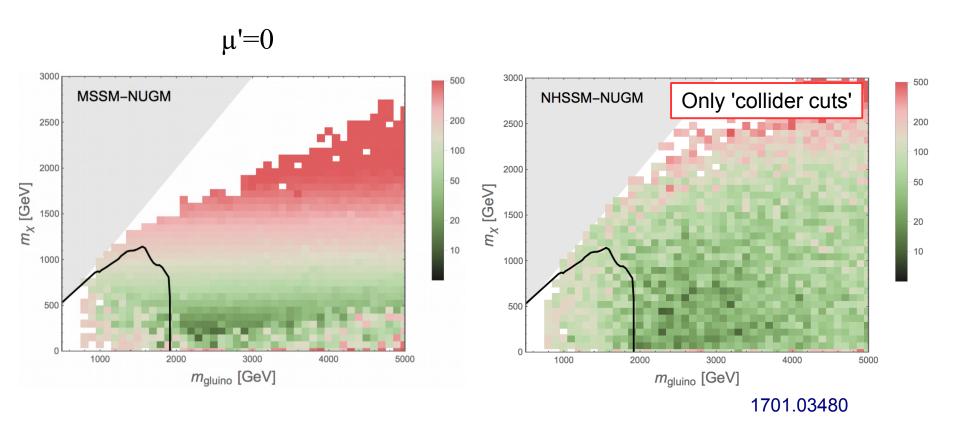
$$\mathcal{L}_{NH} = \mu' \tilde{h}_d \tilde{h}_u + T'_{u,ij} h_d^* \tilde{u}_{R,i}^* \tilde{q}_j + T'_{d,ij} h_u^* \tilde{d}_{R,i}^* \tilde{q}_j + T'_{e,ij} h_u^* \tilde{e}_{R,i}^* \tilde{l}_j + \text{h.c.}$$
Girardello, Grisaru (1982)

> μ' contributes to the Higgsino mass (m_h ~ μ + μ') but does not enter the scalar potential

Now putting everything together...

Embedding this into a model

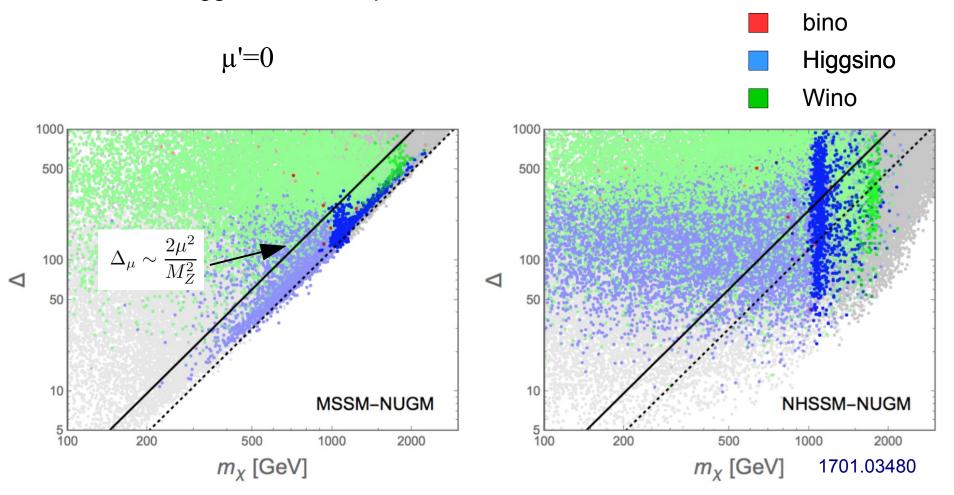
Studied different MSSM variants with GUT boundary conditions


	$m_{h_u}^2$	$m_{h_d}^2$	M_1	M_2	M_3	μ'	A'_0
CMSSM	m_0^2	m_0^2	$m_{1/2}$	$m_{1/2}$	$m_{1/2}$	-	-
MSSM-NUHM	$m_{h_u}^2$	$m_{h_d}^2$	$m_{1/2}$	$m_{1/2}$	$m_{1/2}$	-	-
MSSM-NUGM	m_0^2	m_0^2	$a \cdot m_{1/2}$	$b \cdot m_{1/2}$	$m_{1/2}$	-	-
CNHSSM	m_0^2	m_0^2	$m_{1/2}$	$m_{1/2}$	$m_{1/2}$	μ'	A'_0
NHSSM-NUHM	$m_{h_u}^2$	$m_{h_d}^2$	$m_{1/2}$	$m_{1/2}$	$m_{1/2}$	μ'	A'_0
NHSSM-NUGM	m_0^2	m_0^2	$a \cdot m_{1/2}$	$b \cdot m_{1/2}$	$m_{1/2}$	μ'	A'_0

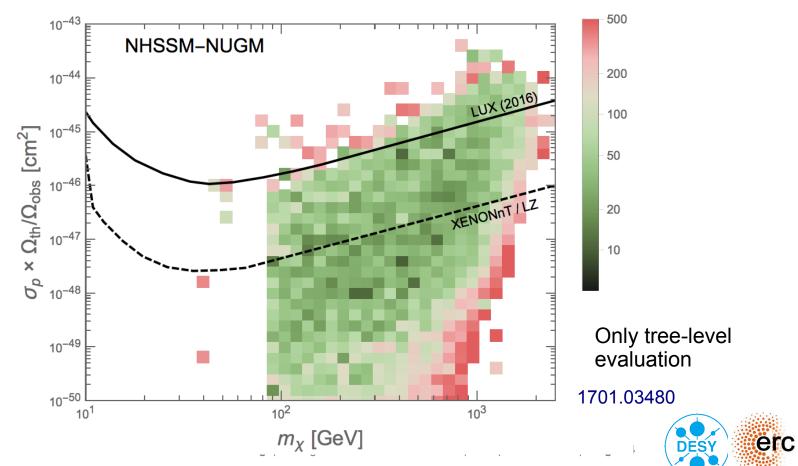
1701.03480

Results non-universal gaugino masses

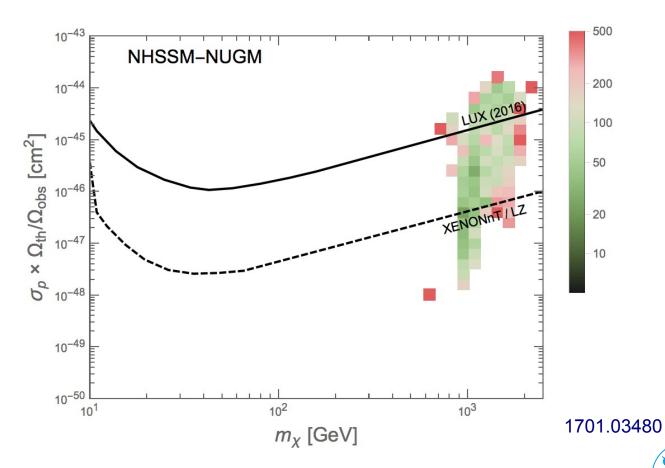
Region of small FT can be well beyond LHC reach



Allowing for DM underabundance FT can be as small as 10.


Results non-universal gaugino masses

A 1 TeV Higgsino can be quite natural


Prospects for direct detection

- Prospects for direct detection
- No lower bound on relic abundance (and rescaled) other DM component

Prospects for direct detection

- Prospects for direct detection
- Correct (thermal) relic abundance

erc

DESY

Summary

- What looks unnatural from an IR perspective might still look natural from the UV
- Extra Higgsino mass contribution μ' could help
- > To do: build a UV model

- 'natural' SUSY could well be beyond the LHC reach
- Good chances at direct detection experiments to find it

Summary

- What looks unnatural from an IR perspective might still look natural from the UV
- Extra Higgsino mass contribution μ' could help
- To do: build a UV model

Thank you!

- 'natural' SUSY could well be beyond the LHC reach
- Good chances at direct detection experiments to find it

