# Search for direct production of sleptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

#### Even S. Håland, Eirik Gramstad, Farid Ould-Saada

Spåtind 2018

Even S. Håland

Direct slepton production

Spåtind 2018 1 / 10

- Symmetry between fermions and bosons.
- Every SM particle accompanied by a superpartner (sparticle) differing by <sup>1</sup>/<sub>2</sub> in spin. In this talk we will meet two sparticles:
  - Sleptons ( $\tilde{\ell}$ ): scalars, partners of the SM leptons.
  - The lightest **neutralino**  $(\tilde{\chi}_1^0)$ : spin- $\frac{1}{2}$ , mixed state of the superpartners of the neutral EW gauge bosons (gauginos) and Higgs boson(s) (higgsinos), good dark matter candidate.
- Able to solve several Standard Model problems; hierarchy problem, dark matter, gauge coupling unification.
- But: not seen in any experiment.

### Direct production of sleptons

- A pair of sleptons produced by  $q\bar{q}$  annihilation.
- Simplified model: Each slepton decays to its SM lepton partner and the lightest neutralino ( $\tilde{\chi}_1^0$ ) with 100% branching ratio.
- Neutralinos assumed to be stable and escape the detector without leaving any trace.
- This means that we are looking for final states with two leptons  $(e^+e^- \text{ or } \mu^+\mu^-)$  and missing transverse energy.



### Standard Model backgrounds

**Background process:** A process that gives the same signature in the detector as the signal process, i.e.  $e^+e^-$  or  $\mu^+\mu^-$  and missing transverse energy in this analysis.





#### Kinematic variables

Basic variables measured by the detector for each particle/jet:

- Transverse momentum,  $p_T$ .
- Azimuthal angle,  $\phi$ .
- Pseudo-rapidity,  $\eta$ .

Variables derived from the basic ones:

- Missing transverse energy,  $E_T^{miss} = |\sum \vec{p}_T|$ .
- Invariant mass of two leptons,

$$m_{\ell\ell} = 2p_{T1}p_{T2}(\cosh(\eta_1 - \eta_2) - \cos(\phi_1 - \phi_2)).$$

•  $M_{T2}$  (stransverse mass),

$$M_{T2} = \min_{\mathbf{p}_{T}^{miss} = \mathbf{q}_{T}^{\chi_{1}} + \mathbf{q}_{T}^{\chi_{2}}} \left\{ \max[m_{T}(\mathbf{p}_{T}^{\ell_{1}}, \mathbf{q}_{T}^{\chi_{1}}; m_{\chi}), m_{T}(\mathbf{p}_{T}^{\ell_{2}}, \mathbf{q}_{T}^{\chi_{2}}; m_{\chi})] \right\}.$$

#### Pre-selection of events

Exactly 2 SF OS signal leptons  $p_T^{lep1} > 25 \text{ GeV } \& p_T^{lep2} > 20 \text{ GeV}$ Lowest unprescaled di-electron and di-muon triggers  $m_{\ell\ell} > 40 \text{ GeV}$  $Z - \text{veto:} |m_Z - m_{\ell\ell}| > 20 \text{ GeV}$  **Purpose:** Selecting a high quality set of events that can be regarded as interesting based on the physical properties of the signal process.



Even S. Håland

- **Purpose:** Selecting events such that we are sensitive to the signal process.
- Event selection optimised by studying simulated signals for 49 different combinations of  $m_{\tilde{\ell}}$  and  $m_{\tilde{\chi}_1^0}$ .
- Two SRs designed to target a wide range of signal points:
  - SR-loose: For signal points with low slepton masses.
  - SR-tight: For signal points with higher slepton masses.

|                               | SR-loose        | SR-tight        |
|-------------------------------|-----------------|-----------------|
| Central <i>b</i> -jets        | 020             | 020             |
| Central light jets            | 0 <sub>60</sub> | 0 <sub>60</sub> |
| $m_{\ell\ell} \; ({\rm GeV})$ | > 111           | > 300           |
| $M_{T2}$ (GeV)                | > 100           | > 130           |

#### Results of the search

|                      | SR-loose                          | SR-tight                          |
|----------------------|-----------------------------------|-----------------------------------|
| Observed events      | 163                               | 9                                 |
| Estimated background | $149.46\pm14.23$                  | $11.62 \pm 1.54$                  |
| Z+jets               | $31.65 \pm 4.89$                  | $\textbf{0.36} \pm \textbf{0.23}$ |
| Diboson              | $74.02\pm5.90$                    | $11.21\pm1.44$                    |
| tŦ                   | $33.36 \pm 3.39$                  | $\textbf{0.00} \pm \textbf{0.00}$ |
| Fakes                | $4.07 \pm 11.46$                  | $\textbf{0.05} \pm \textbf{0.50}$ |
| Other                | $\textbf{6.36} \pm \textbf{1.62}$ | $\textbf{0.01} \pm \textbf{0.00}$ |

## No significant excess observed!



Even S. Håland

Spåtind 2018 8 / 10



NB: exclusion limits not made by me.

- Have done a search for direct production of sleptons by studying two-lepton final states and missing energy in the data set collected by ATLAS over the last two years.
- No significant excess above the expected Standard Model background is observed.
- Exclusion limits on  $m_{\tilde{\ell}}$  and  $m_{\tilde{\chi}_1^0}$  significantly extended.
- More results from the ATLAS SUSY EWK 2/3L group can be found here:

http://cds.cern.ch/record/2267406/files/ATLAS-CONF-2017-039.pdf