Search for electroweak production of supersymmetric particles in the two and three lepton final state at $\sqrt{s} = 13$ TeV with the ATLAS detector

Knut Oddvar Høie Vadla University of Oslo

Spåtind 2018 – Nordic Conference on Particle Physics 05.01.2018

Introduction

- Presenting an overview of a search for electroweak production of supersymmetric particles in the two and three lepton final state
- Based on 2015+2016 data from the LHC 36.1 fb⁻¹ of integrated luminosity taken with the ATLAS detector at √s = 13 TeV
- The results were presented at the LHCP 2017 conference in Shanghai, May 2017
 - ATLAS-CONF-2017-039

Supersymmetry

Supersymmetry (SUSY) is a popular extension of the Standard Model

- Spacetime symmetry between fermions and bosons
- Predicts a new bosonic (fermionic) superpartner for every SM fermion (boson), plus an extra Higgs doublet
- Provides elegant solutions to:
 - The hierarchy problem
 - Gauge coupling unification
 - Dark matter candidates
- If R-parity is conserved: $R = (-1)^{3B+L+2s}$
 - SUSY particles produced in pairs
 - The lightest SUSY particle (LSP) is stable
 - A weakly interacting LSP is a good candidate for dark matter (WIMP)

Search for electroweak production of sparticles with the ATLAS detector

Proton-proton collisions at the LHC:

- Color charged sparticles (squarks and gluinos) will have significantly larger production cross-section than non-colored sparticles (charginos, neutralinos and sleptons) of equal masses
- However, if squarks and gluinos are significantly heavier, charginos, neutralinos and sleptons could dominate the production crosssection at the LHC
- No sign of squarks and gluinos up to ~2 TeV yet electroweak production getting increasingly relevant

Signal models

- The Minimal Supersymmetric Standard Model (MSSM) adds over 100 free parameters to the SM — impossible to explore all scenarios in a search
- Simplified models:
 - Assuming 100 % branching fraction to the decay modes in the model
 - Only 2 free parameters: mass of pair produced sparticles and mass of the LSP

Background estimation

- Irreducible backgrounds containing prompt, isolated leptons are taken from Monte Carlo
- Reducible backgrounds containing 'fake'/non-prompt leptons from semi-leptonic decays or misidentification of jets, or photon-conversion – are estimated by data-driven methods
- Some of the main background processes are in addition fitted to data in control regions (CRs) and validated in dedicated validation regions (VRs)
- Dominant backgrounds:

2L+0jets: diboson

2L+jets: processes with an on-shell Z-boson – diboson, Z+jets

▶ 3L: WZ

Background estimation summary					
Channel	2ℓ +0jets	2ℓ+jets	3ℓ		
Fake leptons	Matrix	method (MM)	Fake factor method (FF)		
$t\bar{t} + Wt$	CR	MC	FF		
VV	CR	MC	CR (WZ-only)		
Z/γ +jets	MC	γ +jet template	FF		
Higgs/ VVV/ top+V	MC				

Systematic uncertainties

- Largest systematic uncertainties:
 - Diboson modelling
 - Jet energy scale and resolution
 - MET modelling
- Dominant uncertainties in the 2L+jets channel:
 - Diboson modelling (30-40%)
 - Data-driven Z+jets estimation (42-71%)
- The binned SRs in the 2L+0jets and 3L channels are dominated by statistical uncertainties on the background estimates
 - ▶ 10 70% in the higher mass regions of the 2L+0jets channel
 - 5 30% in the 3L channel

- Targets pair production of C1 (lightest chargino) and sleptons
- Jets are vetoed

- Binned SRs for exclusion
- Inclusive SRs for discovery

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

$$m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}, \mathbf{q}_{\mathrm{T}}) = \sqrt{2(p_{\mathrm{T}}q_{\mathrm{T}} - \mathbf{p}_{\mathrm{T}} \cdot \mathbf{q}_{\mathrm{T}})}$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2ℓ +0jets binned signal region definitions				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_{\mathrm{T2}}[\mathrm{GeV}]$	$m_{\ell\ell}$ [GeV]	SF bin	DF bin	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		111-150	SR2-SF-a		
200-300 SR2-SF-c SR2-SF-d	100 150	150-200	SR2-SF-b	CD2 DE a	
150-200	100-130	200-300	200-300 SR2-SF-c		
150-200		> 300	SR2-SF-d		
200-300		111-150	SR2-SF-e		
200-300 SR2-SF-g SR2-SF-h	150 200	150-200	SR2-SF-f	SD2 DE h	
111-150 SR2-SF-i 150-200 SR2-SF-j SR2-DF-c 200-300 SR2-SF-k > 300 SR2-SF-l SR2-DF-d	130-200	200-300	SR2-SF-g	SK2-DI-0	
200-300 150-200 200-300 SR2-SF-j SR2-SF-k SR2-DF-c SR2-SF-k SR2-DF-c > 300 > 111 SR2-SF-m SR2-DF-d 2l+0jets inclusive signal region definitions > 100 > 111 SR2-SF-loose SR2-SF-loose SR2-SF-tight SR2-DF-100 > 130 > 300 SR2-SF-tight SR2-DF-100 > 150 - > 150 - > 200 - SR2-DF-150 SR2-DF-200		> 300	SR2-SF-h		
200-300 SR2-SF-k SR2-DF-c > 300 SR2-SF-l > 300 > 111 SR2-SF-m SR2-DF-d 2\ell + 0 \text{jets inclusive signal region definitions} > 100 > 111 SR2-SF-loose - > 130 > 300 SR2-SF-tight - > 100 - SR2-DF-100 > 150 - SR2-DF-150 > 200 - SR2-DF-200		111-150	SR2-SF-i		
200-300 SR2-SF-k > 300 SR2-SF-l	200.300	150-200	SR2-SF-j	SP2 DE a	
> 300 > 111 SR2-SF-m SR2-DF-d 2ℓ+0jets inclusive signal region definitions > 100 > 111 SR2-SF-loose - > 130 > 300 SR2-SF-tight - > 100 - - SR2-DF-100 > 150 - - SR2-DF-150 > 200 - - SR2-DF-200	200-300	200-300	SR2-SF-k	SKZ-DI'-C	
2l+0jets inclusive signal region definitions > 100 > 111 SR2-SF-loose - > 130 > 300 SR2-SF-tight - > 100 - - SR2-DF-100 > 150 - - SR2-DF-150 > 200 - - SR2-DF-200		> 300	SR2-SF-1		
> 100 > 111 SR2-SF-loose - > 130 > 300 SR2-SF-tight - > 100 - - SR2-DF-100 > 150 - - SR2-DF-150 > 200 - - SR2-DF-200	> 300	> 111	SR2-SF-m	SR2-DF-d	
> 130 > 300 SR2-SF-tight - > 100 - - SR2-DF-100 > 150 - - SR2-DF-150 > 200 - - SR2-DF-200	2ℓ +0jets inclusive signal region definitions				
> 100 - SR2-DF-100 > 150 - SR2-DF-150 > 200 - SR2-DF-200	> 100	> 111	SR2-SF-loose	-	
> 150 - SR2-DF-150 > 200 - SR2-DF-200	> 130	> 300	SR2-SF-tight	-	
> 200 - SR2-DF-200	> 100	-	-	SR2-DF-100	
	> 150	-	-	SR2-DF-150	
> 300 - SR2-DF-300	> 200	-	-	SR2-DF-200	
	> 300	-	-	SR2-DF-300	

(a) $m_{\ell\ell}$ distribution in SR2-SF-loose

(b) $m_{\rm T2}$ distribution in SR2-SF-loose

(c) $m_{\rm T2}$ distribution in SR2-DF-100

- No significant deviations from the SM
- Set lower limits on sparticle masses at 95 % CL:
 - C1 masses < 750 GeV excluded for massless LSP
 - Slepton masses < 500 GeV excluded for masses LSP

(a) Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ pair production with $\tilde{\ell}$ -mediated decays

(b) Direct $\tilde{\ell}$ pair production (combined left-handed, $\tilde{\ell}_L$, and right-handed sleptons, $\tilde{\ell}_R$)

- Targets pair production of C1 and N2 (next-to-lightest neutralino) decaying via SM gauge bosons
 - Z -> 2 SFOS leptons
 - W -> 2 jets
- Require at least 2 jets
- Signal regions target different mass splittings ∆m between the pair produced sparticles and the LSP
 - High Δm: MET > 150 GeV
 - Intermediate Δ m: MET > 250 GeV
 - ▶ Low Δ m: MET > 100 GeV
 - 2 SRs: w/ and w/o ISR

2ℓ +jets signal region definitions					
	SR2-int	SR2-high	SR2-low-2J	SR2-low-3J	
$n_{\text{non}-b-\text{tagged jets}}$	≥ 2		2	3-5	
$m_{\ell\ell}$ [GeV]	81	-101	81-101	86-96	
m_{jj} [GeV]	70	-100	70-90	70-90	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	>150	> 250	>100	>100	
$p_{\mathrm{T}}^{\hat{Z}}$ [GeV]	>	>80		> 40	
$p_{\mathrm{T}}^{\hat{W}}$ [GeV]	>100				
m_{T2} [GeV]	>	100			
$\Delta R_{(jj)}$	<	1.5		<2.2	
$\Delta R_{(\ell\ell)}$	<	1.8			
$\Delta\phi_{(ec{E}_{ m T}^{ m miss},Z)}$			< 0.8		
$\Delta\phi_{(ec{E}_{ ext{ iny T}}^{ ext{miss}},W)}$	0.5	5-3.0	> 1.5	< 2.2	
$E_{ m T}^{ m miss}/p_{ m T}^Z$			0.6 - 1.6		
$E_{ m T}^{ m miss}/p_{ m T}^{ m W}$			< 0.8		
$\Delta\phi_{(ec{E}_{ ext{T}}^{ ext{miss}}, ext{ISR})}$				> 2.4	
$\Delta\phi_{(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet1})}$				> 2.6	
$E_{ m T}^{ m miss}/{ m ISR}$				0.4-0.8	
$ \eta(Z) $				< 1.6	
$p_{\mathrm{T}}^{\mathrm{jet3}}$ [GeV]				> 30	

Events / 25 GeV **ATLAS** Preliminary Total SM Z/y+jets \sqrt{s} = 13 TeV, 36.1 fb⁻¹ Top Reducible Other $(m_{\chi_{0}^{*}/\chi_{0}^{0}}^{*}, m_{\chi_{0}^{*}}^{*}) = (150, 50) \text{ GeV}$ $(m_{\chi_{0}^{*}/\chi_{0}^{0}}^{*}, m_{\chi_{0}^{*}}^{*}) = (200, 100) \text{ GeV}$ 10² 10 10^{-1} Data / SM 200 100 150 E_T^{miss} [GeV]

(a) $E_{\rm T}^{\rm miss}$ distribution in SR2-int/high

(b) $E_{\rm T}^{\rm miss}$ distribution in SR2-low

- No significant deviations from the SM
- Set lower limits on sparticle masses at 95 % CL:
 - C1/N2 masses < 580 GeV excluded for massless LSP

Final states with 3L

- Targets pair production of C1 and N2, decaying via sleptons or SM gauge bosons to 3 leptons
- Binned signal regions
 - Slepton mediated decays: no m_□ resonance, binned in 3rd lepton p_T
 - WZ mediated decays: on-shell Z, binned in MET and m_Tmin

3ℓ binned signal region definitions							
$m_{ m SFOS}$	$E_{ m T}^{ m miss}$	$p_{ m T}^{\ell_3}$	$n_{\text{non}-b-\text{tagged jets}}$	$m_{ m T}^{ m min}$	$p_{\mathrm{T}}^{\ell\ell\ell}$	$p_{ m T}^{ m jet1}$	Bins
[GeV]	[GeV]	[GeV]		[GeV]	[GeV]	[GeV]	
<81.2	> 130	20-30		> 110			SR3-slep-a
		> 30					SR3-slep-b
>101.2		20-50					SR3-slep-c
	> 130	50-80		> 110			SR3-slep-d
		> 80					SR3-slep-e
81.2-101.2	60-120						SR3-WZ-0Ja
	120-170		0	> 110			SR3-WZ-0Jb
	> 170						SR3-WZ-0Jc
81.2-101.2	120-200			> 110	< 120	> 70	SR3-WZ-1Ja
	> 200		≥ 1	110-160			SR3-WZ-1Jb
		> 35		> 160			SR3-WZ-1Jc

Final states with 3L

- No significant deviations from the SM
- Set lower limits on sparticle masses at 95 % CL:
 - WZ mediated decays: C1/N2 masses < 380 GeV excluded for massless LSP</p>
 - Slepton mediated decays: C1/N2 masses < 1.1 TeV excluded for masses LSP

(a) Direct $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ pair production with $\tilde{\ell}$ -mediated decays

(b) Direct $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ pair production with WZ-mediated decays

Conclusions and outlook

- We see no significant deviations from the SM in searches for sparticles produced in electroweak processes with two and three leptons in the final state
- Continue to exclude phase space past LHC Run 1 limits
- With strong limits on squarks and gluinos, electroweak production of charginos, neutralinos and sleptons are becoming increasingly relevant
- Efforts ongoing to target more compressed mass splitting scenarios