Charmed states on the lattice

Elena Lushchevskaia

Institute for Theoretical and Experimental Physics named by A.I.Alikhanov of NRC «Kurchatov Institute»,

Moscow Institute of Physics and Technology

Spatind 2018 – Nordic Conference on Particle Physics Skeikampen, 03.02.2018

We calculate

- the charmonium spectrum under $D^0\overline{D}^{0*}$ threshold,
- the energies of D mesons,
- the energies of the tetraquark and molecule states.

Our goal:

 To investigate the physical properties and parameters of charmed hadrons including exotic states in lattice QCD

Several exotic states:

- X(3872) state near $D^0\overline{D}^{0*}$ threshold, $J^{PC}=1^{++}$, X(3872) \rightarrow J/ $\psi\omega$ (I=0), J/ $\psi\rho$ (I=1), $D^0\overline{D}^{0*}$, etc. The state was found by Belle collaboration.
- X(3900), $J^{PC}=1^{+-}$, possible quark structure is $\bar{c}c\bar{d}u$. It was discovered in $J/\psi\pi^{\pm}$ inv.mass by BESII and confirmed by Belle and CLEOc.
- X(4140) with J^{PC} = 1⁺⁺ was found in J/ψφ inv.mass by CDF,
 CMS and D0.
- X(3915) with C=+1 and many other X,Y,Z states.

Possible candidates for describing the nature of exotic states

- $D\overline{D}^*$ molecules composed of a charmed meson D and antimeson \overline{D}^* .
- Tetraquark states consisting of diquark-antidiquark pairs bound by QCD forces.
- c̄cg hybrid states consisting of charm-anticharm quark pair and additional gluons.
- A compact c̄c core bound inside a light meson called hadrocharmonium.
- Superposition of the molecule and tetraquark states, molecule and hadrocharmonium, etc.

Two popular models for X(3872) state with $J^{PC} = 1^{++}$

Tetraquark

The model assumes the existence of charged partners of the X(3872), which have not been observed yet. But they are not excluded. A careful analysis of the decays $B \to KD\overline{D}^*$ and $B \to KD^*\overline{D}^*$ is needed.

DD̄* molecule

Arguments against this:

the branching ratio of $X(3872) \rightarrow \gamma \psi'$ is sufficiently large, it is difficult to form such a fragile object in high-energy collisions.

Constructing of the correlation matrix for the X(3872) state

The correlation function corresponding to the tetraquark state

$$\left\langle \overline{c}(x)\gamma_{\mu}c(x)\overline{q}(x)\gamma_{\mu}q(x)\overline{c}(y)\gamma_{\mu}c(y)\overline{q}(y)\gamma_{\mu}q(y)\right\rangle_{A} \cong$$

$$Tr\left(\frac{1}{D+m_{c}}(x,y)\gamma_{\mu}\frac{1}{D+m_{c}}(x,y)\gamma_{\mu}\right) \cdot Tr\left(\frac{1}{D+m_{q}}(x,y)\gamma_{\mu}\frac{1}{D+m_{q}}(x,y)\gamma_{\mu}\right)$$

• The correlation function corresponding to the molecule state

$$\left\langle \overline{c}(x)\gamma_{\mu}q(x)\overline{c}(x)\gamma_{\mu}q(x)\overline{c}(y)\gamma_{5}q(y)\overline{c}(y)\gamma_{5}q(y)\right\rangle_{A} \cong$$

$$Tr\left(\frac{1}{D+m_{c}}(x,y)\gamma_{\mu}\frac{1}{D+m_{q}}(x,y)\gamma_{\mu}\right)\cdot Tr\left(\frac{1}{D+m_{c}}(x,y)\gamma_{5}\frac{1}{D+m_{q}}(x,y)\gamma_{5}\right)$$

Details of our configurations

Configurations of the QCDSF collaboration with $N_f = 2 + 1$ dynamical quarks

Ensemble	β	V	a, fm	$\kappa_{ m l}$	$M_{\pi}L$	L, fm	N _{conf}
E _l	5.65	$32^3 \times 64$	0.068	0.122005	4.67	2.19	174

 m_c is fixed by is fixed by tuning the spin-averaged kinetic mass

 $\frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ to its physical value (D. Mohler, S. Prelovsek and

R. Woloshyn, Phys.Rev. **D87**, 034501 (2013), [arXiv:1208.4059])

Tuning of the c-quark mass on the lattice

Experiment: $\frac{1}{4}(m_{\eta_c} + 3m_{J/\psi}) = 3068 \pm 2 \text{ MeV},$ $m_{J/\psi} = 3096,9 \pm 0.006 \, MeV, \, m_{\eta_c}(1S) = 2983,4 \pm 0,5 \, \text{MeV}.$ Our results: $\frac{1}{4}(m_{\eta_c} + 3m_{J/\psi}) = 3064 \pm 3 \, \text{MeV},$ $m_{J/\psi} = 3091 \pm 3 \, MeV, \, m_{\eta_c}(1S) = 2985 \pm 3 \, \text{MeV}$ at a = 0.068 fm.

D and D* mesons

Experiment: $m_{D^{0*}} = 2006,85 \pm 0.05 \text{ MeV}, m_{D^0} = 1864,83 \pm 0,05 \text{ MeV}.$ $m_{D^{0*}} + m_{D^0} = 3871,68 \pm 0,05 \text{ MeV}.$

Our results: $m_{D^{0*}}=2040\pm 10$ MeV, $m_{D^0}=1920\pm 10$ MeV, $m_{D^{0*}}+m_{D^0}=3960\pm 20$ MeV at $m_\pi=420$ MeV.

Energies of the tetraquark and molecule

 $E_{\rm tetr} = 3820 \pm 50$ MeV for the fit range $n_t = 22 \div 28$, the state lies below the D⁰ D^{0*} threshold. It requires much more statistics.

 $E_{\rm mol} = 3920 \pm 30$ MeV, the exploration of finite volume effects is needed.

'Single-meson treatment of the excited states'

- Using only quark-antiquark interpolating fields 0~qq for mesons;
- Assuming that all energy levels corresponding to one-particle states;
- The mass of the state equals the measured energy level m=E.

These assumptions are too strong for the resonances, which are not asymptotic states. This approach also ignores the effect of the threshold and near-threshold states.

For the states below open charm threshold

$$m = \sqrt{E^2 - P^2}$$

Perform extrapolations: $L \rightarrow \infty$, $a \rightarrow 0$, $m \rightarrow m_{phys}$.

$\overline{C}C$ spectrum by the HSC, G.Moir et.al. arXiv:1301.7670

Rigorous treatment of near-threshold states X(3872)

$$X(3872) \rightarrow J/\psi\omega, J/\psi\rho$$

Consider also discrete scattering levels DD* and $J/\psi V$, where $V=\omega$ for I=0 and $V=\rho$ for I=1.

The eigenstates are also the s-wave scaterring states $D(\vec{p})D^*(-\vec{p})$ and $J/\psi(\vec{p})V(-\vec{p})$ with discrete momenta \vec{p} .

All states carrying the same quantum numbers, including the single-particle and multi-particle states, in principle contribute to the eigenstates of Hamiltonian.

X(3872) from DD* scattering on the lattice

9 new interpolators have been added into consideration

$$m(X(3872)) - (m_D + m_{D*}) = -8 \pm (15) \text{ MeV}$$

The part of them corresponds to the tetraquark structure $[\bar{c}\bar{q}]_g[cq]_g$

$$m(X(3872)) - (m_D + m_{D*}) = -9 \pm (8) \text{ MeV}$$

Phys. Rev. D 92, 034501 (2015),arXiv:1503.03257 [hep-lat], M.

Padmanath, C. B. Lang, Sasa Prelovsek

$$m(X(3872)) - (m_D + m_{D*}) = -13 \pm (6) \text{ MeV}$$

arXiv:1411.1389 [hep-lat], S.Lee et al (Fermilab Lattice and MILC)

Tetraquark or molecule

We also plan to compare the correlators behavior at finite momentum

Diquark-diantiquark

D⁰-D^{*0} "molecule"

Diquark-diantiquark

Conclusions:

- The energies of the ground charmonia states in a good agreement with the experimen/.
- The energies of the tetraquark and molecule states were calculated.
- The tetraquark state lies under the DD* threshold.
- The molecule state is close to the DD* threshold.

Future plans:

- Take into account mixing between the tetraquark and molecule state.
- Increase statistics.
- Add another interpolation operators into the correlation matrix.
- Go to physical pion masses and consider decays.

Thank you for your attention!