Elina Fuchs Weizmann Institute of Science

in collaboration with Stefan Liebler, Shruti Patel and Georg Weiglein (& Sven Heinemeyer, Pietro Slavich, Tim Stefaniak and Carlos Wagner)

HiggsDays 2017, Santander September 19, 2017

Interpretation of searches for additional scalars

Experimental searches for $\phi = h, H, A \hookrightarrow \text{talks this afternoon}$ production $\{gg \to \phi, b\overline{b}\phi\} \times \text{decay } \phi \to \{\tau^+\tau^-, \mu^+\mu^-, b\overline{b}\}$

ATLAS-CONF-2017-050, CMS-PAS-HIG-16-006

Limitation of interpretation in standard NWA ($\sigma_{prod} \times BR$)

interference terms neglected, relevant especially with complex phases

1 Complex parameters in the MSSM Higgs sector

- Motivation
- \blacksquare 3 imes 3 propagator mixing

2 Phases in gg and $b\bar{b}$ Higgs production

- **3** *CP*-violating interference effect
 - Relative interference term
 - Definition of the $m_{h_1}^{125}(\text{CPVint})$ scenario

4 Impact of interference effects on LHC Higgs searches

- $\blacksquare \ \sigma \times \mathsf{BR}$
- Consequences of interference for exclusion bounds

Motivation

- ► baryon asymmetry of the universe requires BSM *CP*-violation
- ► MSSM Higgs sector is *CP*-conserving at lowest order
- parameters from other sectors can be complex
 - trilinear couplings A_f
 - higgsino mass parameter μ
 - gaugino mass parameters M_1, M_3

Motivation

- ► baryon asymmetry of the universe requires BSM *CP*-violation
- ► MSSM Higgs sector is *CP*-conserving at lowest order
- parameters from other sectors can be complex
 - trilinear couplings A_f
 - higgsino mass parameter μ
 - gaugino mass parameters M_1, M_3

Constraints from EDMs

e.g. [Barger, Falk, Han, Jiang, Li, Plehn '01], [Ellis, Lee, Pilaftsis '09], [Li, Profumo, Ramsey-Musolf '10], [Arbey, Ellis, Godbole, Mahmoudi '14]

▶ least constrained and most relevant in Higgs sector: $\phi_{A_{t,b}}, \phi_{M_3}$

complex phases induce $\mathcal{CP}\text{-violation}$ in Higgs sector via loops

3×3 propagator mixing and \hat{Z} factors

 $\mathbb{C}: \ \mathcal{CP}$ eigenstates h, H, A o mass eigenstates h_1, h_2, h_3

► 3 × 3 propagator matrix,
$$p^2$$
-dependent:

$$\boldsymbol{\Delta}_{hHA}(p^2) = \begin{pmatrix} \Delta_{hh}(p^2) & \Delta_{hH}(p^2) & \Delta_{hA}(p^2) \\ \Delta_{Hh}(p^2) & \Delta_{HH}(p^2) & \Delta_{HA}(p^2) \\ \Delta_{Ah}(p^2) & \Delta_{AH}(p^2) & \Delta_{AA}(p^2) \end{pmatrix}$$

3×3 propagator mixing and \hat{Z} factors

 $\mathbb{C}: \ \mathcal{CP}$ eigenstates h, H, A
ightarrow mass eigenstates h_1, h_2, h_3

$$\mathbf{\Delta}_{hHA}(p^2) = \begin{pmatrix} \Delta_{hh}(p^2) & \Delta_{hH}(p^2) & \Delta_{hA}(p^2) \\ \Delta_{Hh}(p^2) & \Delta_{HH}(p^2) & \Delta_{HA}(p^2) \\ \Delta_{Ah}(p^2) & \Delta_{AH}(p^2) & \Delta_{AA}(p^2) \end{pmatrix}$$

L

• correct on-shell properties of external Higgs bosons with mixing: Z_{aj}

[Chankowski, Pokorski, Rosiek '93], [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '07], [Williams, Rzehak, Weiglein '11]...

$$\hat{Z}_{a} = \frac{1}{1 + \hat{\Sigma}_{ii}^{\text{eff}'}(\mathcal{M}_{h_{a}}^{2})}, \quad \hat{Z}_{aj} = \frac{\Delta_{ij}(\mathcal{M}_{h_{a}}^{2})}{\Delta_{ii}(\mathcal{M}_{h_{a}}^{2})}, \quad \hat{\mathbf{Z}}_{aj} = \sqrt{\hat{Z}_{a}}\hat{Z}_{aj}$$

$$\stackrel{h_{a}}{\longrightarrow} \hat{\Gamma}_{h_{a}} = \sqrt{\hat{Z}_{a}} \left(\underbrace{\overset{h_{a}}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\widehat{Z}_{aH}} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\widehat{Z}_{aA}} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\longleftarrow} \overset{h}{\widehat{Z}_{aA}} \overset{h}{\longleftarrow} \overset{h}{\longrightarrow} \overset{h}{\longrightarrow} \overset{h}{\widehat{Z}_{aA}} \overset{h}{\longleftarrow} \overset{h}{\longrightarrow} \overset{h}{\longrightarrow} \overset{h}{\longrightarrow} \overset{h}{\longrightarrow} \overset{h}{\longrightarrow} \overset{h}{\widehat{Z}_{aA}} \overset{h}{\longleftarrow} \overset{h}{\longrightarrow} \overset{h$$

Breit-Wigner approximation of full propagators

• Breit-Wigner (BW) propagator (mass basis) with complex pole $\mathcal{M}_{h_a}^2$

$$\Delta_a^{\rm BW}(p^2) = \frac{i}{p^2 - \mathcal{M}_{h_a}^2} = \frac{i}{p^2 - M_{h_a}^2 + iM_{h_a}\Gamma_{h_a}}$$

• approximation of full propagator around $p^2 \simeq \mathcal{M}_{h_a}^2$:

$$\Delta_{ii}(p^2) \simeq \Delta_a^{\rm BW}(p^2) \hat{\mathbf{Z}}_{ai}^2$$

• consider all 3 complex poles $\mathcal{M}_a^2, \ a = 1, 2, 3$

Comparison: Breit-Wigner and full propagators

• example scenario \Rightarrow overlap of resonance regions

 Δ_{ij} very well approximated by sum of BW propagators and \hat{Z} -factors

generally: $\Delta M \leq \Gamma_1 + \Gamma_2 \hookrightarrow$ overlapping resonances

MSSM: Higgs bosons can be quasi degenerate and interfere

\mathbb{R}	h,H	$M_h \simeq M_H$ at high $\tan \beta$, low M_A
\mathbb{C}	h_1,h_2,h_3	$M_{h_2} \simeq M_{h_3}$ in decoupling limit

if \mathbb{C} : *incoherent* sum $\sigma_H + \sigma_A$ not sufficient in heavy Higgs searches

Phases in gg and $b\bar{b}$ Higgs production

SusHiMi: Higgs production in the MSSM with complex parameters via $gg \to h_a, \ b\bar{b}h_a, \ a=1,2,3$ [Liebler, Patel, Weiglein 1611.09308]

Elina Fuchs (Weizmann) | CPV interference benchmark | 7

Phase dependence of highly admixed Higgs states

[Liebler, Patel, Weiglein 1611.09308]

Production, decay and interference

Higgs bosons as intermediate states in $\left\{ b\bar{b},gg \right\} \rightarrow h_{a} \rightarrow \tau \tau$

▶ phases have impact on masses, couplings, widths, cross sections, mixing
 ▶ 𝔐 mixing and interference: coherent |∑h_a|² vs. incoherent ∑|h_a|²

Coherent and incoherent contribution

▶ amplitude of Higgs boson h_a exchanged in I→ h_a →F with vert

$$\mathcal{A}_{h_a} \equiv \hat{\Gamma}_{h_a}^I \,\Delta_a^{\mathrm{BW}}(p^2) \,\hat{\Gamma}_{h_a}^F = \sum_{i,j=h,H,A} \hat{\Gamma}_i^I \,\hat{\mathbf{Z}}_{ai} \,\Delta_a^{\mathrm{BW}}(p^2) \,\hat{\mathbf{Z}}_{aj} \,\hat{\Gamma}_j^F$$

Coherent and incoherent contribution

▶ amplitude of Higgs boson h_a exchanged in I→ h_a →F with vert

$$\mathcal{A}_{h_a} \equiv \hat{\Gamma}_{h_a}^I \, \Delta_a^{\mathrm{BW}}(p^2) \, \hat{\Gamma}_{h_a}^F = \sum_{i,j=h,H,A} \hat{\Gamma}_i^I \, \hat{\mathbf{Z}}_{ai} \, \Delta_a^{\mathrm{BW}}(p^2) \, \hat{\mathbf{Z}}_{aj} \, \hat{\Gamma}_j^F$$

• coherent sum
$$|\mathcal{A}|_{coh}^2 = \left|\sum_{a=1}^3 \mathcal{A}_{h_a}\right|^2$$
 contains interference term

• incoherent sum
$$|\mathcal{A}|^2_{\text{incoh}} = \sum_{a=1}^3 \left| \mathcal{A}_{h_a} \right|^2$$

▶ interference term $|\mathcal{A}|_{int}^2 = |\mathcal{A}|_{coh}^2 - |\mathcal{A}|_{inccoh}^2 = \sum_{a < b} 2 \operatorname{Re} \left| \mathcal{A}_{h_a} \mathcal{A}_{h_b}^* \right|$

Framework for the relative interference term

Approach: maintain factorisation into production \times decay

$$\sigma(I \to h_a \to F) = \sum_{a} \sigma(I \to h_a) \times \text{BR}(h_a \to F) + \frac{\sigma_{\text{interference}}^{IF}}{\sum_{a} \sigma(I \to h_a) \times \eta_a^{IF}} \times \text{BR}(h_a \to F)$$

- generalised NWA includes interference
- σ , BR calculated at higher order
- ► relative interference $\eta^{IF} = \frac{\sigma_{\text{int}}^{IF}}{\sigma_{\text{incoh}}^{IF}}$ split into the individual h_a interference contributions: $\eta_a = \frac{\sigma_{\text{int}_{ab}}}{\sigma_{h_a} + \sigma_{h_b}} + \frac{\sigma_{\text{int}_{ac}}}{\sigma_{h_a} + \sigma_{h_c}}$ [EF, Weiglein 1705.05757]
- \blacktriangleright calculation of η_a^{IF} implemented in SusHi, integration over resonance region

Definition of the $m_{h_1}^{125}(\text{CPVint})$ scenario

motivated by large admixture of H, A into h_2, h_3

- h_2, h_3 almost degenerate
- mixing reflected in Z matrix
- large imaginary parts of \hat{Z} matrix

$$M_{\text{SUSY}} = \mu = 1.5 \text{ TeV}$$

$$M_1 = 0.5 \text{ TeV}, \quad M_2 = 1 \text{ TeV}, \quad M_3 = 2.5 \text{ TeV} \cdot e^{i\phi_{M_3}}$$

$$A_t = (\mu \cot \beta + x \cdot M_{\text{SUSY}}) \cdot e^{i\phi_{A_t}}, \quad A_b = A_t, \quad A_\tau = |A_t|, \quad \phi_{A_t}$$

$$M_{(Q,U,D,L,E)_3} = M_{(Q,U,D)_{1,2}} = M_{\text{SUSY}}$$

Version A

$$\phi_{M_3} = \pi/3, \quad x = 1.8$$

 $M_{(L,E)_{1,2}} = 0.5 \text{ TeV}$

Version B

$$\phi_{M_3} = 0, \quad x = 1.5$$

 $M_{(L,E)_{1,2}} = M_{SUSY}$

Interference effect in $b\bar{b} ightarrow h_a ightarrow au au$

 $m_{h_1}^{125}(\mathsf{CPVint})$ A

\hat{Z} -enhancement of cross sections, reduction by destructive interference

 $m_{h_1}^{125}(\text{CPVint}) \text{ A}$

\hat{Z} -enhancement of cross sections, reduction by destructive interference

$$m_{h_1}^{125}(\mathsf{CPVint})$$
 A

\hat{Z} -enhancement of cross sections, reduction by destructive interference

$$m_{h_1}^{125}(\mathsf{CPVint})$$
 A

\hat{Z} -enhancement of cross sections, reduction by destructive interference

$$m_{h_1}^{125}(\mathsf{CPVint})$$
 A

\hat{Z} -enhancement of cross sections, reduction by destructive interference

$$m_{h_1}^{125}(\mathsf{CPVint}) \;\mathsf{B}$$

Combination of precise building blocks

Production: cross sections of $bar{b} o h_a$ and $gg o h_a$ from SusHiMi

Decay: branching ratios for $h_a \rightarrow \tau^+ \tau^-$ from FeynHiggs

Combination of precise building blocks

Combination of precise building blocks

Impact on exclusion bound

HiggsBounds 5.2.0 β^* with SusHiMi and FeynHiggs 2.13.0**

 $m_{h_1}^{125}(\mathsf{CPVint})$ scenario A

- $\phi_{A_t} = \pi/4, \ \phi_{M_3} = \pi/3$
- $M_{h_1} = 125 \pm 3 \,\mathrm{GeV}$ in most of the plane
- $\phi \rightarrow \tau \tau$ ATLAS search sensitive to high masses

unexcluded "fjord" due to strong, destructive interference effect

*thanks to T. Stefaniak

** preliminary checks with FH 2.14.0 β thanks to I. Sobolev and H. Bahl

Impact on exclusion bound

HiggsBounds 5.2.0 β^* with SusHiMi and FeynHiggs 2.13.0**

*thanks to T. Stefaniak

** preliminary checks with FH 2.14.0 β thanks to I. Sobolev and H. Bahl

- include interference also in gluon fusion
 - \blacksquare similar relative effect $\eta^{gg} \sim \eta^{b\bar{b}}$ expected
 - \blacksquare but subdominant production in interference region \Rightarrow less impact on exclusion
 - use 2-dimensional exclusion $(gg, b\bar{b})$ as soon as provided by ATLAS/CMS and included in HiggsBounds

- include interference also in gluon fusion
 - \blacksquare similar relative effect $\eta^{gg} \sim \eta^{b\bar{b}}$ expected
 - \blacksquare but subdominant production in interference region \Rightarrow less impact on exclusion
 - use 2-dimensional exclusion $(gg, b\bar{b})$ as soon as provided by ATLAS/CMS and included in HiggsBounds
- theory uncertainty
 - uncertainty of production (SusHiMi) and decay (FeynHiggs)
 - \blacksquare non-factorisable corrections to η
 - Higgs masses

- include interference also in gluon fusion
 - \blacksquare similar relative effect $\eta^{gg} \sim \eta^{b\bar{b}}$ expected
 - but subdominant production in interference region \Rightarrow less impact on exclusion
 - use 2-dimensional exclusion $(gg, b\bar{b})$ as soon as provided by ATLAS/CMS and included in HiggsBounds
- theory uncertainty
 - uncertainty of production (SusHiMi) and decay (FeynHiggs)
 - non-factorisable corrections to η
 - Higgs masses
- update to FeynHiggs 2.14.0
 - \blacksquare small downward shift of M_{h_1}
 - \blacksquare adjust X_t

for each $(M_{H^{\pm}}, \tan \beta)$:

- ROOT files with standard inputs (\rightarrow see Stefan's talk)
- relative interference factor η_{IF} for production mode I = bb̄, gg and decay channel F = ττ, bb̄, tt̄

proceed with experimental analyses as usual

Summary: \mathcal{CP} benchmark with $h_2 - h_3$ interference

- propagator mixing with loop-induced CP
 - $\label{eq:h} \begin{array}{l} \blacksquare \ h, H, A \to h_1, h_2, h_3 \\ \mbox{full propagators approximated by BW-propagators with } \hat{\mathbf{Z}} \mbox{-factors} \end{array}$
- ▶ Higgs production with complex parameters in SusHiMi
- interference factors η modify prediction of $\sigma \times BR$

Summary: \mathcal{CP} benchmark with $h_2 - h_3$ interference

propagator mixing with loop-induced CP

■ $h, H, A \rightarrow h_1, h_2, h_3$: full propagators approximated by BW-propagators with $\hat{\mathbf{Z}}$ -factors

- ▶ Higgs production with complex parameters in SusHiMi
- interference factors η modify prediction of $\sigma \times BR$
- CP-violating benchmark scenario $m_{h_1}^{125}(CPVint)$ with ϕ_{A_t}, ϕ_{M_3}
 - mixing-enhanced cross sections
 - **\blacksquare** destructive interference suppresses combined h_2, h_3 rate
 - \hookrightarrow interference has significant impact on exclusion limits
 - \hookrightarrow incoherent sum $\sigma_H + \sigma_A$ not sufficient

APPENDIX

Interference effect in $\{bar{b},gg\} ightarrow h_a ightarrow au au$

drastic, destructive interference effect

2 effects of \mathcal{CP} -mixing on cross sections \times BR in $\mathbb{C}M_h^{\text{mod}+}$

enhancement by mixing \hat{Z} -factors, reduction by destructive interference [EF, Weiglein 1705.05757]

2 effects of \mathcal{CP} -mixing on cross sections \times BR in $\mathbb{C}M_h^{\text{mod}+}$

enhancement by mixing \hat{Z} -factors, reduction by destructive interference [EF, Weiglein 1705.05757]

2 effects of \mathcal{CP} -mixing on cross sections \times BR in $\mathbb{C}M_h^{\text{mod}+}$

enhancement by mixing \hat{Z} -factors, reduction by destructive interference [EF, Weiglein 1705.05757]

HiggsBounds 4.2.0

HiggsBounds 4.2.0

HiggsBounds 4.2.0

HiggsBounds with interference implementation

HiggsBounds with interference implementation

Full mixing propagators

mixing self-energies $\hat{\Sigma}_{ij}(p^2)$, i, j = h, H, A \blacktriangleright mass matrix $\mathbf{M}_{ij} = m_i^2 \delta_{ij} - \hat{\Sigma}_{ij}(p^2)$ 2-point vertex functions: $\hat{\Gamma}_{hHA} = i \left[p^2 \mathbf{1} - \mathbf{M}(p^2) \right]$

propagator matrix: $\Delta_{hHA}(p^2) = -\left[\hat{\Gamma}_{hHA}(p^2)\right]^{-1}$

• diagonal propagator
$$\Delta_{ii}(p^2) = \frac{i}{p^2 - m_i^2 + \hat{\Sigma}_{ii}^{\text{eff}}(p^2)}$$

complex poles of propagators: $\mathcal{M}^2_{h_a}$

$$\mathcal{M}_{h_a}^2 = M_{h_a}^2 - iM_{h_a}\Gamma_{h_a}$$

▶ higher-order masses M_{h_a} and widths Γ_{h_a} , a = 1, 2, 3

 \mathcal{CP} eigenstates h, H, A
ightarrow mass eigenstates h_1, h_2, h_3

Ž-factors vs. effective couplings

[EF, Weiglein 1610.06193]

2D-limits [CMS PAS HIG-16-037]

