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HIGGS PAIR PRODUCTION IN THE SM

[Baglio, Djouad\ RG, Mhlleitner, Quewllon Spira'12]
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HIGGS PAIR PRODUCTION IN THE SM

[Baglio, Djouad\ RG, Mhlleitner, Quewllon Spira'12]

o(pp — HH + X) [fb]
My = 125 GeV

1000 g — HH
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m Small cross sections

w Difficult measurement, bby~y most promising channel

[Baur, Plehn, Rainwater '03; Baglio, Djouadi, RG, Muhlleitner, Quevillon, Spira '12; Yao '13; Barger, Everett, Jackson, Shaughnessy
"13; Azatov, Contino, Panico, Son '15; Lu, Chang, Cheung, Lee '15; Kling, Plehn, Schichtel '16]
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WHY?

a Measurement of trilinear Higgs coupling.

m Constraining the effective Lagrangian.

m Higgs couplings to gluons, top Yukawa
m Resolve degeneracy? l.e. probe additional particles in the loop

m Testif EWSB is linear or nonlinear.
w3/2(cc—1)#cu?

Gy # Cgg ?

m Probe resonant production of additional Higgs bosons.




Experimental status
see yesterday’s talks by Arnaud and Abdollah




EXPERIMENTAL STATUS

[CMS-PAS-HIG-17-008]

18.CMS Preliminary 35.9 fb? (13 TeV)
E pp —HH - bbyy 9= Cyg :Cz=0:_
| 16 —— Observed 95% C.L. limit E
14 Expected 95% C.L. limit >
- Expected + 1o E
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a Experimental measurement
difficult, requires high
luminosities

m Efforts ongoing, searches in
many final states

m Current constraints of
O(E£15A3M ) farxiv:1500.0467:

arXiv:1506.0028; arXiv:1603.0689;
ATLAS-CONF-2016-049]

w Prospects in bby~ final state:
—0.8 < Apun/ AN, < 7.7

[ATL-PHYS-PUB-2017-001]




Standard Model




THEORETICAL STATUS

Giluon fusion:
m LO cross section known exactly in full mass dependence ﬁ;‘:“fﬂs ;:"Ze‘:jv;s?gﬂ’ssi
a NLO QCD corrections R R
Difficulty: Multi-scale problem m?2, 8, 1, &I, m2.
w improved LET: K = oy 0/010 ~ 1.7 (g oo prmater sera
LET approximation — small external momenta 8, #, &, m? < m?
1 o1 1L 2Pait q?
(P+q)2—m?  p?—m? P2 —m?2

At LO, however,
5 [Degrassi, Giardino, RG '16]
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GLUON FUSION: STATUS

m Estimation of finite mass effects: Inclusion of higher orders in
large top mass expansion O(£10%)

m Real contributions in full top mass dependence — top mass
effects O(—10%)

m Full NLO computation — top mass effects —14%
Caveat: 4680 hours of GPU time!
Grid of numerical values with interpolation function imple-
mented in POWHEG

u NNLO QCD corrections are of O(20%)
available only in in expansion in small external momenta

m Threshold resummation further increases the result
® NNLO+ NNLL in large top mass limit [De Fiorian, Mazzitelli '15]
u NLL with top quark mass effects [Ferrera, Pires 16]
Theoretical uncertainty:
Scale 6°/o, PDF 2°/o, Qg 2% [LHC Higgs cross section working group]

[Grigo, Hoff, Melnikov, Stein-
hauser '13; Grigo, Hoff,
Steinhauser '15; Degrassi,
Giardino, RG '16]

[Frederix, Frixione, Hirschi,
Maltoni, Mattelaer, Torrielli,
Vryonidou, Zaro '14]

[Bobrowka, et al.’16]

[Heinrich, Jones, Kerner,
Luisoni, Vryonidou '17]

[de Florian, Mazzitelli '13;
Grigo, Melnikov, Steinhauser
'14; Grigo, Hoff, Steinhauser
'15; de Florian, Mazzitelli "15;
de Florian, Grazzini, Hanga,
Kallweit, Lindert, Maierhofer,
Mazzitelli, Rathlev '16]




MASS EFFECTS IN GLUON FUSION

w Top quark mass effects are important

u What about NNLO?

m What about similar processes
m Higgs + jet
m gg — HZ (contributes at NNLO to associated production with Z)
w gg — ZZ (top loop, contributes at NNLO to ZZ production)




MASS EFFECTS IN GLUON FUSION

w Top quark mass effects are important

u What about NNLO?

m What about similar processes
m Higgs + jet
m gg — HZ (contributes at NNLO to associated production with Z)
w gg — ZZ (top loop, contributes at NNLO to ZZ production)

— Given the full computation of HH we can test new methods
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PADE APPROXIMATION

Approach:
m Conformal mapping: with z = ﬁ [Fleischer, Tarasov '94]
t

4w

T ey

m Padé approximant )
Yo aw

) = T B
n+ m + 1 conditions needed to fix coefficients a;, b;

w Input for Padé:
5 conditions from large top mass expansion [pegrassi, Giardino, RG 16],
3 (2) conditions from threshold expansion [RG, Maier, Rauh to appear]

m Padé approximant for rescaled form factor with
(1+ar2)F

to fix correct high energy behavior
m error estimate by varying agr and for different n, m




PADE APPROXIMATION AT LO

[RG, Maier, Rauh to appear]

full —
01l [n/m] w/o THR — |
— [n/n£1,3] - -
>
O 008 [ ]
~
=)
=006 F b
=
=
=
3 004 [ ]
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=
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— with input from threshold expansion: approximation very good




PADE APPROXIMATION AT NLO

[RG, Maier, Rauh to appear]

8107 : ‘ T
pr = 100 GeV
7-107 [ ]
6-107* [ ]
L\; 5.1074 [ -.;iiiiif%%%%%%%i%illi%%
<5} .!i
R . %
kS 2
N R
2
20074 by full o
1104 [ reweighted HEFT 1
* [n/n+0,2] e

350 400 450 500 550 600 650 700
MHH [GQV]

— reliable approximation with correct scaling behaviour, full result within error estimate

full virtual corrections from [Heinrich, Jones, Kerner, Luisoni, Vryonidou '17]




Beyond the Standard Model




HH PRODUCTION BEYOND THE STANDARD MODEL

g h g _h g _h
L L0q, - e
// /z’
---« <
A\ So
N N
N S - N
9 “h 9 “h g Sh
g Lh 9 _h
’ /’
, .
, -
---< 3
N N
N \\
N ~
g “h g “h

m Resonant production, i.e. in extended Higgs sectors

m modified couplings: Appn, top Yukawa

m novel couplings, i.e. in Composite Higgs Models [ra, minileitner '11]
m new particles in the loop, i.e. stops, fermionic top partners
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NEW PHYSICS FOR THE FIRST TIME IN HH PRODUCTION

Can we see New Physics for the first time in HH
production?

m This question has to be answered in concrete models.

a Obviously for resonant production in s channel, with new resonance
predominantly decaying to Higgs bosons this will be the case.

m Here other case:
No s channel resonance, just coupling modifications and new couplings
— Composite Higgs Models.




CAN NEW PHYSICS BE SEEN FOR THE FIRST TIME IN HH PRODUCTION?

Direct searches:
projected sensitivities
for vector-like quarks

Indirect tests:
EWPT, | V3| > 0.92

Higgs couplings:
projected sensitivities

S=0BRLA

Consider two final states: bbrt7~ and bbyy

EWPTs from [ailioz, RG, Kapuvari, Mihlleitner '14]
Higgs coupling sensitivity from (englert, Freitas, Manileitner et. ar'14]
Vector-like quarks, projected sensitivities m < 1.5 TeV
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CAN NEW PHYSICS BE SEEN FOR THE FIRST TIME IN HH PRODUCTION?
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Grey points: Cannot be distinguished at LHC from SM
Blue points: Can be distinguished only in HH from SM

[RG, Muhlleitner, Spira '16]

bbyy final state |

JL£=3001"

m Most sensitive final state bby~y
m For £ = 3000 fb~" distinction on 3¢ level from SM possible even if we do not see
New physics elsewhere first

onzo [fb]

80 ¢

bbyy final state |

[ £=3000fb"!
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HIGHER ORDER CORRECTIONS IN BSM

Higher order corrections in BSM in LET available

m singlet extension [pawson, Lewis '15]

m SUSY-QCD corrections in MSSM and NMSSM [Agostini, Degrassi, RG, Slavich '16]
— appendix

u dim-6 operators [RG, Mihlleitner, Spira, Streicher *15, NNLO: de Florian, Mazzitelli '17, CP-violation: RG, Miihlleitner,
Spira’17]

m Composite Higgs Model [ra, mitileitner, Spira '16]

a 2HDM [Hespel, Lopez-Val, Vryonidou '14; RG, Muhlleitner, Spira '17] — appendix




HIGHER ORDER CORRECTIONS IN BSM

Non-linear effective Lagrangian:

- h H? 13M2 as h i
_ n _ h3 a v a _ P
L mytt (ct " + Cﬁ—2V2> 036 " G G| C " + CgQ2V2

.= ~ h ~ h2 (073 auy ~a ~ h ~ h2
—imtyst (Crv +Cn2v2> + ?G L G}“/ Cg; +ngﬁ

[RG, Muhlleitner, Spira, Streicher’ 15] 25 [RG, Mhlleitner, Spira '17]
K(pp — hh+X) ’ ‘ ‘ ‘ " K(pp > hh+ X)
25 ¢ \/s—14 TeV 1 s Vs = 14TeV
5 | =lc=1¢;=0,¢,=0 ] Kior
_—”'/—\
Ktot 15
1.5 F 9
1 i
Kgg _________._.______53_3 _______________
05 . 05 ________________L(V_m_ ______________
Ky
0 0'_'__'__'_'__'__7(”_4 ______________ ]
2q
05 L L L L L 05 L L . . .
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 L5 1 0.5 0 0.5 1

= Effect of dim-6 operatoren on K = oy o/0L0 is O(few %)




The trilinear Higgs self-coupling




OTHER APPROACHES

Reminder:
LHC projection: (arL-pHYs-PUB-2017-001] —0.8< k) = )‘hhh/)‘?}f\fh <77

m Single Higgs production
Annn enters in NLO corrections to single Higgs production

9 ~H
3
N
\ 9 TOTOOD
\ I ! S nm
® - - - N "
/ -
/ ’/
t P 7
9 - 9 TOOOOD

Under the assumption of purely a trilinear Higgs self-coupling modification

—9.4 < K37 <17

[McCullough '14, Gorbahn, Haisch "16, Degrassi, Giardino, Maltoni, Pagani '16, Bizon, Gorbahn, Haisch, Zanderighi '16]
Global analysis, prospects at HL-LHC [Di Vita, Grojean, Panico, Rimbau, Vantalon '17]
01 <kl"<23

u Electroweak precision tests
Anhn enters at 2-loop order

—14.0 < K37 < 17.4

[Degrassi, Fedele, Giardino '17, Kribs, Maier, Rzehak, Spannowsky, Waite '17]




Can the trilinear Higgs self-coupling be bounded by theoretical
arguments?




Can the trilinear Higgs self-coupling be bounded by theoretical
arguments?

How large can the trilinear Higgs self-coupling be in concrete
models?




VACUUM STABILITY
VO(H) = =2 [H + AHI* + 3 |HE

small field instability

large field instability
V(h)

——

V()
<0, A<0, ¢cg>0

S ——

>0, A>0, cg<0
NS
N/
R
> h

— it turns out that we cannot connect the possible instabilities of such a deformed

potential to a bound on the trilinear Higgs self-coupling




LARGE FIELD INSTABILITY

Toy model: for a similar argument, see [Burgess, Di Clemente, Espinosa '02]
1 1 1 1
V(h,¢) = —EmZh2 + Z/\h“ + §M2¢>2 +ERP¢ + kP¢? + qus“l
Electroweak vacuum absolutely stable if

52
k>0, A A>>, A XN>0.
K
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LARGE FIELD INSTABILITY

Toy model:
1 1 1 1

V(h,¢) = —EmZh2 + Z/\h“ + §M2¢>2 + ehPp + hP¢? + qus“l

Electroweak vacuum absolutely stable if
52
k>0, A A>—, A XN >0.
Integrating ¢ out and expanding instead in M? > 2xh? leads to
Verr(h) ~ ——m2h2 + - Ah“ - —g—h6 + ih8
2 M2

he operator makes potential seem unstable!

— for a vacuum stability analysis full tower of EFT operators necessary!

for a similar argument, see [Burgess, Di Clemente, Espinosa '02]




PERTURBATIVITY

h ,h h< _ _-h h~ _ sh ko h
N N 7 ’ \r \'\ / N N 7 ’
N 7 | N/ N7
- - = hi hi X X
s h N | 17\ N
e AN L PPN e AN
h” Nheo o h- T T ~h h-" b h” Nh
Partial wave analysis
1
0
IRe &yl < 5
08 Avn I A =7 Anin = Asoin 06 Anon = A Anonn ! Ay, = 85
0.5
] 4yrix
-, _ 04y s+t+u+dvrix i
N ] £
3
E o 0.3 b
i
S+tHU+AVIX _— 0.2 ]
0.2
e 0.1 ]
T s
0.0l— Ayrix T 0.0 5. U
" 300 400 500 600 700 800 ’ 500 1000 1500 2000

VsiGev] Vs[Gev]




PERTURBATIVITY

m 4-vertex contribution and s + t + u channel dominate in different kinematical

regimes
— a bound on A\ppp and Apppp can be set seperately
& Ao/ AM| <65 and [ Apan/ARN,| < 65.

m another criterium: [pi Luzio, Kamenik, Nardecchia '16]
requirement that loop-corrected vertex < tree-level vertex

w we find | Appn/ASH | < 6




Full models




WHICH MODELS?

In which model we expect the largest shifts in the trilinear Higgs self-couplings?
If there is a tree-level contribution to £s = 75| H|®.

" H H
L = HH® or L = HHH® ®

“H
All such scalar extensions can be classified.
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L = HH® or L = HHH® N N .

All such scalar extensions can be classified.

L e | o©
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(1,3,1) | oHHT
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(1,4,3) | oHIHIHT

How much can the trilinear Higgs self-coupling be in these models, taking into account
indirect constraints?




WHICH MODELS?

In which model we expect the largest shifts in the trilinear Higgs self-couplings?
If there is a tree-level contribution to £s = 75| H|®.

L=HH® or L= HHH® . A

All such scalar extensions can be classified.

L [ o

(1,1,0) SHHT
(1,3,0) SHHT
(1 3, 1) SHTHT
) | ®HHTHT
) | ®HHTHT
) | ®HTHTHT

)

1,4
1?47

)

(,
(
(

N[O [N = PO

How much can the trilinear Higgs self-coupling be in these models, taking into account
indirect constraints?




CUSTODIAL SYMMETRIC: SINGLET

1 1
V(H,®) = @& [HP? + M|H|* + 2u2¢2 + palHP® + A3|H|2<1>2 +3He®? + 22000
In scan treat parameters for masses, VEVs and mixing angle

my = 125 GeV, 800 GeV < m, < 2000 GeV,

vy = 246.2 GeV, |Vs| < Mo, 09<cosf<1.
8
Scan 1: 0< X< 3™ [A3] < 16m,

Scan 2: 0< X< 1/6, [As] <1,

We impose perturbativity, check for vacuum stability with Vevacious [carmargo-Molina,
O’Leary, Porod, Staub '13]




M
A/ Mh

TRILINEAR HIGGS SELF-COUPLING IN SINGLET EXTENSION

20 20 , . — . , . : .
I | Scan 2
15 15 F | | ]
| I
10 10 F | | ]
vt i |
5 55 0 g |
= \ ;
0 = .
2 . r- a 1
= o o e !
-5 ~< -5 s 1
".\_" AR :
-10 | 10 | | ! ]
. I . I 1
15 *Excluded by | Excluded 15 Excluded by | Excluded I
- Higgs coupling| by my ] —r Higgs coupling! by my 1 ]
measurement } measurement | measurement } measurement :
20 . h : . . 7 . 20 h ; . . . .

09 091 092 093 094 095 096 097 098 099 1
cos 6

0.9 091 092 093 094 095 096 097 098 099 1
cos 0

Singlet Model allows for deviations in the trilinear Higgs self-coupling of

Scan1: —15< )‘hhh/)‘z% <87

Scan2: — 0.3 < Apan/AM < 2.0

Color code: ew vacuum is stable,
Exclusion from my, (Ar) from [Lopez-Val, Robens '14]
Higgs coupling measurement, see [ATLAS, arXiv:1509.00672]

, unstable




CONCLUSION

m From a measurement of Higgs pair production we can potentially learn a lot about
the Higgs boson.

m Experimental and theoretical efforts ongoing.

m Recent results on NLO QCD corrections in full top mass dependence allow to test
approximation methods — they can be applied to other processes.

w Perturbative range for |Apan/ A3 | not yet tested by HH results and indirect
methods.




CONCLUSION

m From a measurement of Higgs pair production we can potentially learn a lot about
the Higgs boson.

m Experimental and theoretical efforts ongoing.

m Recent results on NLO QCD corrections in full top mass dependence allow to test
approximation methods — they can be applied to other processes.

w Perturbative range for |Apan/ A3 | not yet tested by HH results and indirect
methods.

Thanks for your attention!




MSSM SQCD CORRECTIONS

m Top-loop contributions given in [pawson, dittmaier, Spira ‘e8]

m Triangle form factor can be borrowed from single Higgs anastasiou et al ‘06, Agietti et al ‘06,
Mahlleitner, Spira '06, Bonciani, Degrassi, Vicini '07]

m box form factors for stop contributions need to be computed
LET approximation:
NLO form factors (for CP-even Higgs bosons) computed from derivatives of the
field-dependent contributions of top and stops in the gluon self-energy at 2-loop

ong (0)

Mi < B OH;0H;

with o AH b
M= yiHy | sin6; — yi( t u + 1 d)

'1 [

2 2,2
(m, + e - 2p2h 2 i, = R A o)

1
m? [
12 2

w Validity: 8, 8,8, m? < m2




MSSM SQCD CORRECTIONS: SBOTTOM CONTRIBUTIONS

u For m, = 0, contribute only via D-terms.

m Cannot be computed via LET since there are diagrams containing sbottom,
glUinOS and bottoms. [pegrassi, Slavich '10]

9T -

— Computed as zeroth order cofficient of an asymptotic expansion for m, = 0




MSSM SQCD CORRECTIONS: RESULTS

O [Agostini, Degrassi, RG, Slavich '16]
T T T

1-loop, top only — — —-

1-loop, top+SUSY 7
2-loop, top only — — — -

2-loop, top+SUSY

_4 L L L L L L L L L
500 600 700 800 900 1000 1100 1200 1300 1400 1500

Ms [GeV]




MSSM SQCD CORRECTIONS: RESULTS

o(pp — hh) [fb]

[Agostini, Degrassi, RG, Slavich '16]
60 T T T

a0 b

20

10

LO, full

LO, no SUSY ———-

NLO, full

NLO, no SUSY — — — -

NLO, no SUSY in F2f -.......

500 600 700 800 900 1000 1100 1200 1300 1400
Ms [GeV]

1500




onco(pp — HiHy + X) [pb]

NLO QCD CORRECTIONS FOR CP-VIOLATING 2HDM

Scenario: [Mihlleitner, Sampaio, Santos, Wittenbrodt '17]

a4 =0.853, ag = 0.0072, tan 8 = 0.969 , Re(m?,) = 70957 GeV? ,
my, =125GeV , my, = 377.6 GeV, my+ = 709.7 GeV .

[RG, Mahlleitner, Spira '17]

25 T T
K(pp — HiH, + X)
Vs = 14 TeV
2 F
10 | 1.5
1 [
______________ ISEE-______—___——__._
el Koo ]
P LT
. A JUS SRS
KK‘I
‘ ‘ ‘ ‘ ‘ 05 ‘ ‘ ‘ ‘ ‘
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 -0.15 -0.1 -0.05 0 0.05 0.1 0.15




CUSTODIAL VIOLATING: TRIPLET

V(H, ®) = (2|H2 + 12|02 + X [H* 4+ Ixo |0* + IXg|HI2|® + paHT o HO

T
1
1.04 | I A
1.02 +
=
a3
~<
~ 1 [ommememms
<=
=
= [
~< 1
0.98 - :
1
l
Allowed by po 1
0.96 - I
I
L

0 0002 0004 0006 0008 0.0l 0012 0.014
vp /v

Strongest bound on model from p parameter

(rec v
1447
po Vs




LOOP-INDUCED CORRECTIONS TO THE TRILINEAR HIGGS SELF-COUPLING

If a shift in the trilinear Higgs self-coupling is induced by fermion loops a connection to
vacuum stability is re-established

Example:

RH neutrinos inverse seesaw, with
common mass scale M = 10 TeV and
Y,, = |yy | 13 trilinear Higgs self-coupling computed in:
[Baglio, Weiland '16]

|y»| = 0.8 requires already UV comple-
tion within a 2 orders of magnitude
restricts Apan/ Mg < 0.1%.

Higgs effective coupling Ae

-0.10

4 6 8 10 12 14 16 18
logo(4IGeV)
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