# LHC Higgs WG2: EFT and benchmarks

Chris Hays, Oxford University



HDays Santander September 20, 2017

### Overview

LHC Higgs WG2

WG2 document plans

Fitting EFT parameters using STXS

# LHC Higgs WG2: Higgs properties

Working group tasked with general characterization of the Higgs boson Serves as an intermediary between SM predictions and BSM models

Yellow report 4 defined several directions for further study

Measurement-based:

- Simplified template cross sections (STXS)
- differential cross sections (diffXS)

Joined into a subgroup headed by Frank Tackmann, Nicolas Berger, and Predrag Milenovic

Interpretation-based:

- pseudo-observables (PO)
- effective field theory (EFT)

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG2

Conveners: Mingshui Chen, Chris Hays, David Marzocca, Francesco Riva

# WG2 documents

Three documents proposed in July LHC Higgs general meeting:

(1) Relating STXS to BSM parameters (EFT / PO) Collection of documents on STXS updates and STXS $\rightarrow$ EFT equations Status: STXS/diffXS subconveners have clear plans for updating documentation Note on STXS $\rightarrow$ EFT equations to be posted soon (details in this talk)

### (2) Benchmark models and interpretations

Discuss a handful of simplified models and mappings to EFT parameters Status: not started, kick-start with a WG2 meeting

### (3) Combining Higgs & EW measurements

*Collection of documents joint with LHC EW WG to standardize diboson bins and define equations for EFT parameters* Status:

Initiated discussion with LHC EW WG in July, will follow up

# **STXS overview**

YR4 defined standard binning for cross section measurements using unfolding (diffXS) or SM template distributions (STXS)

The standards allow for public 'tools' mapping the measurements to EFT parameters

Aim for experiments to use the tools to perform combined EFT fits

### STXS vs diff-XS for fitting EFT parameters:

- STXS implemented in workspace as an intermediate translation of the data: effectively a direct fit to data
- STXS can better fit low-statistics regions (no unfolding)
- STXS relies on SM distributions for extrapolations within bins and migrations across bins
  - Leads to theory uncertainties and potential model-dependence

# **Mapping STXS to EFT**

### Use "Stage 1" STXS: $\sigma_i \times \mathcal{B}_{4\ell}$



Can update to Stage 1.5 or Stage 2 when available / appropriate

# **Mapping STXS to EFT**

Take cross sections and decay widths to be quadratic functions of EFT

Have validated approximation to substantially higher accuracy than data

$$\sigma_{EFT} = \sigma_{SM} + \sigma_{int} + \sigma_{BSM}$$

$$\frac{\sigma_{int}}{\sigma_{SM}} = \sum_{i} A_{i}c_{i}, \qquad \mathcal{B}_{4\ell} = \frac{\Gamma_{4\ell}}{\Sigma_{f}\Gamma_{f}} \approx \frac{\Gamma_{4\ell}}{\Sigma_{f}\Gamma_{f}^{SM}} \left[ 1 + \sum_{i} A_{i}^{4\ell}c_{i} + \sum_{ij} B_{ij}^{4\ell}c_{i}c_{j} - \sum_{f} \left( \sum_{i} A_{i}^{f}c_{i} + \sum_{ij} B_{ij}^{f}c_{i}c_{j} \right) \right],$$
  
$$\frac{\sigma_{BSM}}{\sigma_{SM}} = \sum_{ij} B_{ij}c_{i}c_{j}, \qquad \frac{\Gamma_{f}}{\Gamma_{4\ell}} \approx \frac{\Gamma_{f}^{SM}}{\Gamma_{4\ell}^{SM}} \left[ 1 + \sum_{i} A_{i}^{f}c_{i} + \sum_{ij} B_{ij}^{f}c_{i}c_{j} - \left( \sum_{i} A_{i}^{4\ell}c_{i} + \sum_{ij} B_{ij}^{4\ell}c_{i}c_{j} \right) \right]. \qquad (3)$$

Madgraph options available to directly evaluate  $A_i$  and  $B_{ij}$  for i = j

Need to subtract two calculations to get  $B_{ij}$  for  $i \neq j$ 

# **EFT tools**

Until recently only one Madgraph EFT implementation available to fit both Higgs & EW data

Higgs effective Lagrangian (HEL) model includes 39 flavor-symmetric operators in the SILH basis (all except 4-fermion, with some redundancy)

HEL limitations:

- Leading order, no running EFT couplings
- ggF loop not resolved
- only a subset of operators

Impending updates to address these issues:

- *ĤEL to add top-Higgs couplings in ggF loop*
- Warsaw basis implementation (Trott et al) includes operators without flavour-symmetry assumptions (2499 parameters) http://feynrules.irmp.ucl.ac.be/wiki/SMEFT
- Another Warsaw basis implementation (Maltoni et al) to include NLO QCD corrections and running couplings

## **EFT tools**

| Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CP even              | CP odd              | WHZ Pole parameters |               | Class                                                                                                                                                                                                            | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|---------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| General SMEFT $(n_f = 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53 [10]              | 23 [10]             | $\sim 23$           |               | 1                                                                                                                                                                                                                | $C_W \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         |
| General SMEFT $(n_f = 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1350 [10]            | 1149 [10]           | $\sim 46$           |               | 3                                                                                                                                                                                                                | $\{C_{HD}, C_{H\Box}\} \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2         |
| $U(3)^5$ SMEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sim 52$            | $\sim 17$           | $\sim 24$           |               | 4                                                                                                                                                                                                                | $\{C_{HG}, C_{HW}, C_{HB}, C_{HWB}\} \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4         |
| MEV SMEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sim 108$           | _                   | $\sim 30$           |               | 5                                                                                                                                                                                                                | $\{C_{uH}, C_{dH}\} \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sim 2$  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                  |                     | , • 50              |               | 6                                                                                                                                                                                                                | $\{C_{uW}, C_{uB}, C_{uG}, C_{dW}, C_{dB}, C_{dG}\} \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sim 6$  |
| Standard Model Effective Field Theory The SMEFTsim package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     | 8/ <u>17 16:41:</u> | 7             | $\{C_{\mathcal{U}\ell}^{(1)}, C_{\mathcal{U}\ell}^{(3)}, C_{\mathcal{U}\sigma}^{(1)}, C_{\mathcal{H}\sigma}^{(3)}, C_{\mathcal{H}e}, C_{\mathcal{H}e}, C_{\mathcal{H}d}\} \in \mathbb{R}.$                       | $\sim 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     | U                   | 8 (1          | $(\bar{L}L)(\bar{L}L)$                                                                                                                                                                                           | $\frac{C_{H\ell}}{E} = \frac{1}{4} \frac{1}{$ | 2         |
| Authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                     |               |                                                                                                                                                                                                                  | Total Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sim 24$ |
| Ilaria Brivio, Yun Jiang and Micheal Trott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                     |               | _                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| ilaria.brivio@nbi.ku.dk, yunjiang@nbi.ku.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k, michael.trott@ce  | ern.ch              |                     |               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| NBIA and Discovery Center, Niels Bohr Institute, Univ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ersity of Copenhagen |                     |                     |               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                     |               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| The model description         The Standard Model Effective Field Theory (SMEFT) is constructed out of a series of SU(3) <sub>C</sub> × SU(2) <sub>L</sub> × U(1) <sub>Y</sub> invariant higher dimensional opera built out of the SM fields.         The SMEFTsim package provides a complete implementation of the lepton and baryon number conserving dimension-6 Lagrangian adopting the stass arXiv:1008.4884.         The SMEFTsim package provides implementations for 3 different flavor assumptions and 2 input scheme choices, for a total of 6 different models the flavor assumptions adopted are (see arXiv:1709.xxxxx for a detailed description)         • The flavour general case         • The U(3) <sup>5</sup> flavor symmetric case, with possible non-SM CP-violating phases         • A linear Minimal flavor violation (MFV) ansatz arXiv:0207036, in which non-SM CP-violating effects are neglected, but linear flavor-violatin insertions are allowed in quark currents         For each model it is possible to choose between two input parameters sets for the electroweak sector, namely:         • 0 scheme: {0 <sub>em</sub> , mz, G <sub>f</sub> }         • my scheme: {0 <sub>m</sub> , mz, G <sub>f</sub> }         Two independent models sets (A and B) are supplied. Each set contains a main file, a number of subroutines and restriction files. The two sets d structure and in the technical implementation of L <sub>6</sub> , but they produce consistent results. The use of both sets is recommended for debugging an of the numerical results.         Pre-exported UFO files to be interfaced with MadGraph5_aMC@NLO can also be downloaded from this page (see Table below). |                      |                     | SMEFT.fr            | 77<br>e<br>Dm | SMdefs.fr<br>Scheme=1<br>SMfields_alphascheme.fr<br>SMfields_mWscheme.fr<br>SMYukawas.fr<br>Flavor=1<br>Flavor=2<br>Flavor=3<br>SMEFTparms_fr<br>SMEFTparms_MFV.fr<br>Scheme=1<br>parms_alphascheme.fr<br>Lag.fr | ]<br>U.fr<br>]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Usage recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                     |                     |               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| The CMEETains people as is designed to exclude survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | Charles of the CMEE |                     |               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |

The SMEFTsim package is designed to enable numerical studies of the LO interference of the SMEFT with the SM, while neglecting NLO corrections. In this spirit, it has not been optimized for loop calculations in the SM or in the SMEFT. In particular:

- the Lagrangian assumes unitary gauge. Using it in R<sub>xi</sub> or Feynman gauge may lead to inconsistent results, as the ghost Lagrangian have not been modified to account for L<sub>6 corrections</sub>.
- the UFO files are not suitable for NLO evaluation in MadGraph5\_aMC@NLO

-----,

# STXS fit strategy

- Start with HEL implementation of SILH basis in Madgraph
- Reduce parameter set using external constraints
  - Take tightly constrained parameters to be zero
  - Can relax to Gaussian constraints to check impact
- Use equations relating STXS to EFT parameters to fit the data

Aims for first fit:

- Compare fits from workspace to those from STXS measurements
- Compare fits with and without quadratic terms
- Study variety of operator fit combinations and constraints

V. Sanz contributing constraints and G. Zemaityte determining equations Documenting in WG2 note, will expand to include EFT updates

### **External constraints**

### HEL EW scheme: $m_W$ , $\alpha_{EM}$ and $G_F$ inputs

 $m_Z = \frac{gv}{2\cos\theta_W} \left[ 1 - \mathsf{cT} + \frac{g'^2}{2m_W^2 \sin^2\theta_W} \left( \mathsf{cWW}\cos\theta_W^2 + \mathsf{cB}\sin\theta_W^2 + 4\mathsf{cA}\sin^4\theta_W \right) \right]^{1/2}$ 

Constrain  $m_Z$  to  $91.19 \pm 0.02$ 

| HEL operator                                                                                                                              | Coefficient                                                                         | Constraint $(TeV^{-2})$                            |                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------|
| $\mathcal{O}_g = \frac{g_s^2 \mathbf{cG}}{m_W^2}  H ^2 G^A_{\mu\nu} G^{A\mu\nu}$                                                          | $rac{c_g}{\Lambda^2}=rac{g_s^2}{m_W^2}$ cG                                        | (-0.074, 0.025)                                    |                                 |
| $	ilde{\mathcal{O}}_g = rac{g_s^2 \ddot{	t t} \mathbf{c} \mathbf{G}}{m_W^2}  H ^2 G^A_{\mu u} 	ilde{G}^{A\mu u}$                         | $rac{	ilde{c}_g}{\Lambda^2}=rac{g_s^{2^{\prime\prime}}}{m_W^2}{	t t}{	t c}{	t G}$ | $\left(-0.028, 0.028 ight)$                        |                                 |
| $\mathcal{O}_{\gamma} = rac{g'^2 \overset{\circ}{\mathbf{c}} \mathbf{A}}{m_W^2}  H ^2 B_{\mu u} B^{\mu u}$                               | $rac{c_\gamma}{\Lambda^2} = rac{g^{\prime 2}}{m_W^2}$ cA                          | $\left(-0.0022, 0.00043 ight)$                     |                                 |
| $	ilde{\mathcal{O}}_{\gamma} = rac{g'^2 	extsf{tcA}}{m_W^2}  H ^2 B_{\mu u} 	ilde{B}^{\mu u}$                                            | $rac{	ilde{c}_{\gamma}}{\Lambda^2}=rac{{g'}^2}{m_W^2} {	t t} {	t c} {	t A}$       | (-0.0024, 0.0024)                                  |                                 |
| $\mathcal{O}_u = \frac{y_u \mathbf{c} \mathbf{u}}{v^2}  H ^2 u_L H u_R + \text{h.c.}$                                                     | $\frac{c_u}{\Lambda^2} = \frac{cu}{v^2}$                                            | (-1.4, 2.6)                                        |                                 |
| $\mathcal{O}_d = \frac{y_d \operatorname{cd}}{v^2}  H ^2 d_L H d_R + \operatorname{h.c.}$                                                 | $rac{c_d}{\Lambda^2}=rac{	extsf{cd}}{v^2}$                                        | (-3.3, 1.5)                                        | Operators constrained by        |
| $\mathcal{O}_{\ell} = \frac{y_{\ell} \mathrm{cl}}{v^2}  H ^2 \ell_L H \ell_R + \mathrm{h.c.}$                                             | $rac{c_\ell}{\Lambda^2} = rac{\mathtt{cl}}{v^2}$                                  | (-170, 170)                                        | Higgs & EW data                 |
| $\mathcal{O}_{H}=rac{cH}{2v^{2}}\left(\partial^{\mu} H ^{2} ight)^{2}$                                                                   | $rac{c_H}{\Lambda^2} = rac{cH}{v^2}$                                              | (-2.3, 3.2)                                        |                                 |
| $\mathcal{O}_6 = \frac{\lambda c6}{v^2} \left( H^{\dagger} H \right)^3$                                                                   | $rac{c_6}{\Lambda^2}=rac{\lambda}{v^2}$ c6                                        | (-170, 170)                                        | Most CP-even constraints taken  |
| $\mathcal{O}_{HW} = \frac{ig cHW}{m_W^2} \left( D^{\mu} H \right)^{\dagger} \sigma^a (D^{\nu} H) W^a_{\mu\nu}$                            | $rac{c_{HW}}{\Lambda^2} = rac{g}{m_W^2}$ cHW                                      | (-3.5, 1.5)                                        | from global Run 1 fit by Ellis, |
| $\tilde{\mathcal{O}}_{HW} = \frac{ig \texttt{tcHW}}{m_W^2} \left( D^{\mu} H \right)^{\dagger} \sigma^a (D^{\nu} H) \tilde{W}^a_{\mu\nu}$  | $rac{	ilde{c}_{HW}}{\Lambda^2} = rac{g}{m_W^2} 	extsf{tcHW}$                      | (-6.0, 6.0)                                        | Sanz, and You                   |
| $\mathcal{O}_{HB} = \frac{ig' c_{HB}^{HB}}{m_W^2} \left( D^{\mu} H \right)^{\dagger} \left( D^{\nu} H \right) B_{\mu\nu}$                 | $rac{c_{HB}}{\Lambda^2}=rac{g'}{m_W^2}$ cHB                                       | (-2.5, 4.1)                                        | CP-odd operators constrained    |
| $\tilde{\mathcal{O}}_{HB} = \frac{ig' \text{tcHB}}{m_W^2} \left( D^{\mu} H \right)^{\dagger} \left( D^{\nu} H \right) \tilde{B}_{\mu\nu}$ | $rac{	ilde{c}_{HB}}{\Lambda^2} = rac{g^{\prime\prime\prime}}{m_W^2} 	extsf{tcHB}$ | (-13, 13)                                          | from individual fits            |
| $\mathcal{O}_W = \frac{igcWW}{2m_W^2} \left( H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu} $                                | $rac{c_W}{\Lambda^2} = rac{g}{m_W^2}$ cWW                                         | $\frac{c_W/g - c_B/g'}{\Lambda^2} = (-5.4, 0.77)$  |                                 |
| $\mathcal{O}_B = \frac{ig^{T} \mathbf{c} \mathbf{B}}{2m_W^2} \left( H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$              | $rac{c_B}{\Lambda^2} = rac{g'}{m_W^2}$ cB                                         | $\frac{c_W/g + c_B/g'}{\Lambda^2} = (-0.51, 0.28)$ | ) 11                            |

# **External constraints**

| HEL operator                                                                                                                                                | Coefficient                                                           | Constraint $(TeV^{-2})$     | 2)                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|---------------------------------------------------|
| $\mathcal{O}_{3W} = \frac{g^3 c 3W}{m_{\mu\nu}^2} \epsilon_{ijk} W^i_{\mu\nu} W^{\nu j}_{\rho} W^{\rho\mu k}$                                               | $rac{c_{3W}}{\Lambda^2}=rac{g^3}{m_W^2}$ c3W                        | (-3.6, 1.9)                 |                                                   |
| $\tilde{\mathcal{O}}_{3W} = \frac{g^3 \overset{W}{\text{tc3W}}}{m_W^2} \epsilon_{ijk} W^i_{\mu\nu} W^{\nu j}_{\rho} \tilde{W}^{\rho\mu k}$                  | $rac{	ilde{c}_{3W}}{\Lambda^2}=rac{g^{3^W}}{m_W^2}	t c 3 	extbf{W}$ | (-7.8, 7.8)                 | Operators constrained by<br>EW & QCD data         |
| $\mathcal{O}_T = \frac{cT}{2v^2} \left( H^\dagger D^\mu H \right)^2$                                                                                        | $rac{c_T}{\Lambda^2} = rac{	extsf{cT}}{v^2}$                        | (-0.071, 0.055)             |                                                   |
| $\mathcal{O}_{2W}=rac{g^2	extsf{c2W}}{m_{_{I\!W}}^2}D^\mu W^k_{\mu u}D_ ho W^{ ho u}_k$                                                                    | $rac{c_{2W}}{\Lambda^2}=rac{g^2}{m_W^2}$ c2W                        | (-170, 170)                 | EW constraints taken from                         |
| $\mathcal{O}_{2B} = \frac{g^{\prime 2} \overset{\scriptscriptstyle W}{\mathbf{c2B}}}{m_W^2} \partial^{\mu} B_{\mu\nu} \partial_{\rho} B^{\rho\nu}$          | $rac{c_{2B}}{\Lambda^2}=rac{g^2}{m_W^2}$ c2B                        | (-170, 170)                 | global fit by Ellis, Sanz,<br>and You             |
| $\mathcal{O}_R^u = rac{{ m cHu}}{v^2} \left( i H^\dagger D_\mu H  ight) \left( ar u_R \gamma^\mu u_R  ight)$                                               | $rac{c_R^u}{\Lambda^2} = rac{	extsf{cHu}}{v^2}$                     | (-0.18, 0.18)               |                                                   |
| $\mathcal{O}_R^d = rac{cHd}{v^2} \left( i H^\dagger D_\mu H  ight) \left( ar{d}_R \gamma^\mu d_R  ight)$                                                   | $rac{c_R^d}{\Lambda^2} = rac{	extsf{cHd}}{v^2}$                     | $\left(-0.69, 0.073 ight)$  | QCD constraint taken from                         |
| $\mathcal{O}_R^e = rac{\mathrm{cHe}}{v^2} \left( i H^\dagger D_\mu H  ight) \left( \bar{e}_R \gamma^\mu e_R  ight)$                                        | $rac{c_R^e}{\Lambda^2} = rac{	extsf{cHe}}{v^2}$                     | (-0.030, 0.0041)            | Individual fit by Krauss,<br>Kuttimalai and Plehn |
| $\mathcal{O}_L^q = rac{\mathrm{cHQ}}{v^2} \left( i H^\dagger D_\mu H  ight) \left( ar{Q}_L \gamma^\mu Q_L  ight)$                                          | $rac{c_L^q}{\Lambda^2} = rac{	extsf{chQ}}{v^2}$                     | (-0.031, 0.11)              | (assume similar constraints                       |
| $\mathcal{O}_L^{(3)q} = \frac{\operatorname{cpHQ}}{v^2} \left( i H^{\dagger} \sigma^a D_{\mu} H \right) \left( \bar{Q}_L \sigma^a \gamma^{\mu} Q_L \right)$ | $\frac{c_L^{(3)q}}{\Lambda^2_{(2)l}} = \frac{\mathtt{cpHQ}}{v^2}$     | $\left(-0.073, 0.073 ight)$ | for all operators)                                |
| $\mathcal{O}_{LL}^{(3)L} = \frac{1}{v^2} \left( \bar{L}_L \sigma^a \gamma^\mu L_L \right) \left( \bar{L}_L \sigma^a \gamma^\mu L_L \right)$                 | $\frac{c_{LL}^{(3)t}}{\Lambda^2} = \frac{1}{v^2}$                     | (-0.021, 0.012)             | 12 additional HEL                                 |
| $\mathcal{O}_{3G}=rac{g_s^3	extsf{c3G}}{m_W^2}f_{abc}G^a_{\mu u}G^{ u b}_ ho G^{ ho\mu c}$                                                                 | $rac{c_{3G}}{\Lambda^2}=rac{g_s^3}{m_W^2}$ c3G                      | (-0.045, 0.045)             | operators not constrained                         |
| $\tilde{\mathcal{O}}_{3G} = \frac{g_s^3 \text{tc3G}}{m_W^2} f_{abc} G^a_{\mu\nu} G^{\nu b}_{\rho} \tilde{G}^{\rho\mu c}$                                    | $rac{	ilde{c}_{3G}}{\Lambda^2}=rac{g_s^{3''}}{m_W^2}$ tc3G          | (-0.045, 0.045)             | (e.g. chromomagnetic)                             |
| $\mathcal{O}_{2G} = \frac{g_s^2 \mathbf{c} \mathbf{2G}}{m_W^2} D^\mu G^a_{\mu\nu} D_\rho G^{\rho\nu}_a$                                                     | $rac{c_{2G}}{\Lambda^2}=rac{g_s^2}{m_W^2}$ c2G                      | (-0.045, 0.045)             |                                                   |

Show leading terms in note (coefficients must span <3 orders) Put complete equations on LHCHxsWG twiki

| Cross-section region                                                          | $\sum_{i} A_i c_i$              |                                        |
|-------------------------------------------------------------------------------|---------------------------------|----------------------------------------|
| $gg \to H \ (0\text{-jet})$                                                   |                                 | (-, 2 - 1)                             |
| $gg \to H \ (1\text{-jet}, \ p_T^H < 60 \ \text{GeV})$                        | $56c'_g$                        | $(c_g = 16\pi^2 CG)$                   |
| $gg \rightarrow H \ (1\text{-jet}, \ 60 \le p_T^H < 120 \ \text{GeV})$        |                                 |                                        |
| $gg \to H \ (1\text{-jet}, \ 120 \le p_T^H < 200 \ \text{GeV})$               | $56c'_g + 18$ c3G + 11c2G       | In this implementation agH binning     |
| $gg \to H \ (1\text{-jet}, \ p_T^H \ge 200 \ \text{GeV})$                     | $56c'_g + 52$ c3G $+ 34$ c2G    | iust constrains c 2G and c 3G          |
| $gg \to H \ (\geq 2\text{-jet}, \ p_T^H < 60 \ \text{GeV})$                   | $56c'_g$                        |                                        |
| $gg \rightarrow H~(\geq 2\text{-jet},~60 \leq p_T^H < 120~\mathrm{GeV})$      | $56c'_g + 8$ c3G $+ 7$ c2G      | Fit to current measurements can focus  |
| $gg \rightarrow H \ (\geq 2\text{-jet}, \ 120 \leq p_T^H < 200 \ \text{GeV})$ | $56c'_g + 23$ c3G $+ 18$ c2G    | on $c_g$ ', cWW-cB, cHW, cHB, cu       |
| $gg \to H \ (\geq 2\text{-jet}, \ p_T^H \geq 200 \ \text{GeV})$               | $56c'_{g} + 90$ c3G + $68$ c2G  |                                        |
| $gg \to H \ (\geq 2\text{-jet VBF-like}, \ p_T^{j_3} < 25 \ \text{GeV})$      | $56c'_q$                        | Substantial enhancement in sensitivity |
| $gg \to H \ (\geq 2\text{-jet VBF-like}, \ p_T^{j_3} \geq 25 \ \text{GeV})$   | $56c'_g + 9$ c3G $+ 8$ c2G      | in VBF $p_T^{J} > 200$ GeV bin         |
| $qq \rightarrow Hqq \text{ (VBF-like, } p_T^{j_3} < 25 \text{ GeV})$          | 1.4cWW $- 4.3$ cHW $- 0.29$ cHI | B                                      |
| $qq \rightarrow Hqq \text{ (VBF-like, } p_T^{j_3} \ge 25 \text{ GeV})$        | 1.6cWW $- 5.5$ cHW $- 0.39$ cHI | В                                      |
| $qq \to Hqq \ (p_T^j \ge 200 \text{ GeV})$                                    | 30cWW + $1.6$ cB - $7.0$ cHW -  | 0.62cHB                                |
| $qq \to Hqq \ (60 \le m_{jj} < 120 \text{ GeV})$                              | 31cWW + 2.5cB + 13cHW +         | 1.0сНВ                                 |
| $qq \to Hqq \text{ (rest)}$                                                   | 8.7cWW + $0.52$ cB - $0.40$ cHV | N                                      |
|                                                                               | -0.98cH $+2.9$ cu $+0.93$ cG    | 3 + 310cuG                             |
| $gg/qq \rightarrow ttH$                                                       | +27c3G $-13$ c2G                | 13                                     |

| Cross-section region                                                                  | $\sum_i A_i c_i$                                                        |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $q\bar{q} \to H l \nu \ (p_T^V < 150 \text{ GeV})$                                    | -1.0 cH + 34 cWW + 11 cHW + 24 cpHQ + 2.0 cpHL                          |
| $q\bar{q} \rightarrow H l \nu \ (150 \le p_T^V < 250 \text{ GeV}, 0 \text{ jets})$    | -1.0 cH + 76 cWW + 51 cHW + 67 cpHQ + 2.0 cpHL                          |
| $q\bar{q} \rightarrow H l \nu \ (150 \le p_T^V < 250 \text{ GeV}, \ge 1 \text{ jet})$ | -1.0 cH + 71 cWW + 46 cHW + 61 cpHQ + 2.0 cpHL                          |
| $q\bar{q} \to H l \nu \ (p_T^V \ge 250 \text{ GeV})$                                  | -1.0 cH + 200 cWW + 170 cHW + 190 cpHQ + 2.0 cpHL                       |
|                                                                                       | $-1.0 { m cH} - 4.0 { m cT} + 30 { m cWW} + 8.4 { m cB} + 8.5 { m cHW}$ |
| $q\bar{q} \rightarrow Hll \ (p_T^V < 150 \text{ GeV})$                                | +2.5 cHB+0.032 cA-1.9 cHQ+23 cpHQ+5.2 cHu                               |
|                                                                                       | -2.0cHd $-0.96$ cHL $+2.0$ cpHL $-0.23$ cHe                             |
|                                                                                       | $-1.0 { m cH} - 4.0 { m cT} + 62 { m cWW} + 18 { m cB} + 38 { m cHW}$   |
| $q\bar{q} \rightarrow Hll \ (150 \le p_T^V < 250 \text{ GeV}, 0 \text{ jets})$        | +11 cHB-5.0cHQ+61cpHQ+14cHu-5.2cHd                                      |
|                                                                                       | $-0.98 \mathrm{cHL} + 2.1 \mathrm{cpHL} - 0.23 \mathrm{cHe}$            |
|                                                                                       | $-1.0 { m cH} - 4.0 { m cT} + 58 { m cWW} + 17 { m cB} + 33 { m cHW}$   |
| $q\bar{q} \rightarrow Hll \ (150 \le p_T^V < 250 \text{ GeV}, \ge 1 \text{ jet})$     | +9.9 cHB-4.6 cHQ+56 cpHQ+14 cHu-4.6 cHd                                 |
|                                                                                       | $-0.99 \mathrm{cHL}+2.1 \mathrm{cpHL}-0.24 \mathrm{cHe}$                |
|                                                                                       | $-1.0 { m cH} - 4.0 { m cT} + 150 { m cWW} + 46 { m cB} + 130 { m cHW}$ |
| $q\bar{q} \to Hll \ (p_T^V \ge 250 \text{ GeV})$                                      | +38 cHB-14 cHQ+170 cpHQ+42 cHu-14 cHd                                   |
|                                                                                       | -0.98cHL $+ 2.1$ cpHL $- 0.24$ cHe                                      |

### VH includes many parameters constrained by LEP (Vff)

| Partial width            | $\sum_i A_i c_i$                                                                                                  |                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|
| $H \rightarrow b\bar{b}$ |                                                                                                                   |                              |
| $H \to WW^*$             |                                                                                                                   |                              |
| $H \to ZZ^*$             | $10 {\tt cWW} + 2.8 {\tt cB} + 2.9 {\tt cHW} + 0.018 {\tt cA} + 2.0 {\tt cHL} + 2.0 {\tt cpHL} + 0.027 {\tt cHe}$ | $(a)^{2} - 16 - 2 c \Lambda$ |
| $H \to \gamma \gamma$    | $-5.8c'_{\gamma}$                                                                                                 | $(C\gamma - 10\pi^2 CF)$     |
| $H \to \tau \tau$        |                                                                                                                   |                              |
| $H \to gg$               |                                                                                                                   |                              |
| $H \to cc$               |                                                                                                                   |                              |
| $H \rightarrow all$      | 0.0029 cT + 0.17 cu + 2.3 cd + 0.11 cl + 1.0 cWW + 0.023 cB + 0.37 cHW                                            |                              |
|                          | +0.0079 cHB + 1.6 cG + 0.0078 cHQ + 0.17 cpHQ + 0.0027 cHu + 0.057 cpHL                                           |                              |

| Partial width             | $\sum_{ij} B_{ij} c_i c_j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Widths annear in all measurements        |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| $H \rightarrow b \bar{b}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | which appear in an measurements          |
| $H \to WW^*$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
|                           | + $0.25$ cH <sup>2</sup> + $4.0$ cT <sup>2</sup> + $28$ cWW <sup>2</sup> + $3.5$ cB <sup>2</sup> + $2.2$ cHW <sup>2</sup> + $0.20$ cHB <sup>2</sup> + $1.8$ cHL <sup>2</sup><br>+ $1.8$ cpHL <sup>2</sup> + $0.43$ cHe <sup>2</sup> + $0.14$ tcHW <sup>2</sup> + cH( $2.0$ cT - $5.1$ cWW - $1.3$ cB - $1.4$ cHW<br>- $0.43$ cHB - $1.0$ cHI - $1.0$ cpHI + $0.43$ cHe) + cT(- $20$ cHW - $5.3$ cB - $5.7$ cHW                                                                                                                     |                                          |
| $H \to Z Z^*$             | -1.7 cHB - 4.1 cHL - 4.1 cpHL + 1.7 cHe) + cW(10 cB + 15 cHW + 4.4 cHB) $+ 12 crW + 12 crW + 25 cW) + cP(2.8 crW + 1.1 crW) + 0.052 c + 1.1 crW$                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
|                           | +12cHL + 12cpHL - $3.3$ cHe) + cB( $3.3$ cHw + $1.1$ cHB + $0.032c_{\gamma}$ + $1.1$ cHL<br>+ $1.1$ cpHL - $2.1$ cHe) + cHW( $1.3$ cHB + $3.0$ cHL + $3.0$ cpHL - $1.3$ cHe)<br>+cHB( $0.91$ cHL + $0.91$ cpHL - $0.39$ cHe) + cHL( $3.5$ cpHL - $0.13$ cHe)                                                                                                                                                                                                                                                                       | Quadratic terms messy                    |
|                           | +cpHL(-0.13cHe) + 0.081tcHW(tcHB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
| $H\to\gamma\gamma$        | $8.4(c_{\gamma}^{\prime 2}+c_{\tilde{\gamma}}^{\prime 2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Many nous anaratara annoar               |
| $H\to\tau\tau$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Many new operators appear                |
| $H \to gg$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e g first appearance of CP-odd operators |
| $H \to cc$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c.g. mst appearance of CI -oud operators |
| $H \rightarrow all$       | $\begin{split} 0.24 \text{cH}^2 + 0.037 \text{cT}^2 + 0.13 \text{cu}^2 + 1.7 \text{cd}^2 + 0.084 \text{cl}^2 + 2.6 \text{cWW}^2 + 4.7 \text{cHW}^2 \\ + 4.3 \text{cHB}^2 + 23 \text{cG}^2 + 0.09 \text{cpHQ}^2 + 0.066 \text{cHud}^2 + 0.027 \text{cpHL}^2 + 4.3 \text{tcHW}^2 \\ + 4.3 \text{tcHB}^2 + 23 \text{tcG}^2 + \text{cH}(-0.086 \text{cu} - 1.2 \text{cd} - 0.056 \text{cl} - 0.51 \text{cWW} \\ - 0.18 \text{cHW} - 0.083 \text{cpHQ} - 0.029 \text{cpHL}) + \text{cT}(-0.19 \text{cWW} - 0.046 \text{cB} \end{split}$ | Cross-terms have larger stat uncertainty |
|                           | $\begin{aligned} -0.051 \text{cHW} &- 0.027 \text{cpHQ} + \text{cWW}(0.11 \text{cB} + 1.9 \text{cHW} + 0.04 \text{cHB} + 0.86 \text{cpHQ} \\ + 0.29 \text{cpHL}) + \text{cHW}(0.03 \text{cB} - 8.6 \text{cHB} + 0.1 c_{\gamma} + 0.31 \text{cpHQ} + 0.11 \text{cpHL}) \\ + \text{cHB}(-0.1 c_{\gamma}) + \text{tcHW}(-8.6 \text{tcHB} + 0.1 \tilde{c}_{\gamma}') + \text{tcHB}(-0.10 \tilde{c}_{\gamma}') \end{aligned}$                                                                                                           | 15                                       |

| $gg \to H$ region                 | $\sum_{ij} B_{ij} c_i c_j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-jet                             | $780(c_g'^2 + c_{\tilde{q}}'^2) + c_g'(300 \text{cH} + 1200 \text{cd} + 700 \text{cuG} - 200 \text{cdG} + 200 \text{c3G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1-jet,                            | $780(c_g'^2 + c_{\tilde{q}}'^2) + c_g'(-1000 \text{cH} - 1000 \text{cd} - 2000 \text{cdG} - 2000 \text{c2G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $p_T^H < 60 { m ~GeV}$            | $+\tilde{c}'_{g}(-2000$ tc3G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-jet,                            | $780(c_g'^2 + c_{\tilde{q}}'^2) + 70(\texttt{tc3G}^2 + \texttt{c3G}^2) + 80\texttt{c2G}^2 + c_g'(1000\texttt{cH} + 1000\texttt{cd})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $60 \le p_T^H < 120 \text{ GeV}$  | $+1000 \text{cuG} + 3000 \text{cdG} + 1000 \text{c3G} - 1000 \text{c2G}) + \tilde{c}'_g(2000 \text{tc3G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1-jet,                            | $780(c_g'^2 + c_{\tilde{q}}'^2) + 940(\texttt{c3G}^2 + \texttt{tc3G}^2) + 560\texttt{c2G}^2 + 5.6\texttt{cuG}^2 + c_g'(2000\texttt{cH}) + 560\texttt{c2G}^2 + $                                                                                                             |
| $120 \le p_T^H < 200 \text{ GeV}$ | $+4000 \text{cd} + 4000 \text{cuG} - 1000 \text{cdG} + 1000 \text{c3G} + 2000 \text{c2G}) + \tilde{c}'_{g}(1000 \text{tc3G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-jet,                            | $780(c_g'^2 + c_{\tilde{q}}'^2) + 32 \texttt{cuG}^2 + 13100(\texttt{c3G}^2 + \texttt{tc3G}^2) + 12200\texttt{c2G}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $p_T^H \ge 200 \text{ GeV}$       | $+c'_{g}(8000 \text{cH} - 14000 \text{cd} - 4000 \text{cuG} - 7000 \text{cdG} - 6000 \text{c3G} + 11000 \text{c2G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | +c2G(800cH + 1200cu + 1300cuG + 1800cdG + 900cd + 2900c3G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                   | $+c3G(400cu + 100cd + 400cuG) + 10000\tilde{c}'_{g}tc3G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\geq$ 2-jet,                     | $780(c_g'^2 + c_{\tilde{q}}'^2) + 170(\texttt{c3G}^2 + \texttt{tc3G}^2) + 140\texttt{c2G}^2 + c_g'(-1000\texttt{cH} - 1000\texttt{cd}) = 1000\texttt{cd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $p_T^H < 60 { m ~GeV}$            | $-1000 \texttt{cuG} - 1000 \texttt{cdG} - 1000 \texttt{c3G} + 2000 \texttt{c2G}) + 2000 \tilde{c}'_g \texttt{tc3G} + \texttt{c3G}(50\texttt{c2G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\geq$ 2-jet,                     | $780(c_g'^2 + c_{\tilde{g}}'^2) + 360(\texttt{c3G}^2 + \texttt{tc3G}^2) + 410\texttt{c2G}^2 + c_g'(-2000\texttt{cd} - 1000\texttt{cuG}) + 600\texttt{cd} + 1000\texttt{cuG} + 1000\texttt{cuG}) + 1000\texttt{cuG} + 100\texttt{cuG} + 100$ |
| $60 \le p_T^H < 120 \text{ GeV}$  | -1000 cdG - 2000 c3G + 2000 c2G) + c2G(-20 cH - 20 cu + 70 c3G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\geq$ 2-jet,                     | $780(c_g'^2 + c_{\tilde{g}}'^2) + 1800(\texttt{c3G}^2 + \texttt{tc3G}^2) + 1900\texttt{c2G}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $120 \le p_T^H < 200 \text{ GeV}$ | $+c'_{g}(-1000 	ext{cH} - 2000 	ext{cd} - 1000 	ext{cuG} + 2000 	ext{cdG} - 2000 	ext{c3G} - 3000 	ext{c2G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   | +c2G(-20cH - 20cu - 100cd + 40cuG - 110cdG + 340c3G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | $+c3G(10cH + 10cu + 30cd - 10cuG) + \tilde{c}'_g(3000tc3G)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\geq$ 2-jet,                     | $780(c_g'^2+c_{\tilde{g}}'^2)+63000 \texttt{c2G}^2+35000 (\texttt{c3G}^2+\texttt{tc3G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $p_T^H \ge 200 \text{ GeV}$       | $+c'_{g}(-1000 \text{cH} - 3000 \text{cd} - 4000 \text{cuG} + 5000 \text{cdG} - 9000 \text{c3G} + 6000 \text{c2G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   | $+ \texttt{c2G}(-100\texttt{cuG} + 100\texttt{cdG} + 4500\texttt{c3G}) + \tilde{c}'_g(3000\texttt{tc3G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\geq$ 2-jet, VBF-like,           | $780(c_g'^24+c_{\tilde{g}}'^2)+240(\texttt{c3G}^2+\texttt{tc3G}^2)+360\texttt{c2G}^2+c_g'(2000\texttt{cH}-4000\texttt{cd})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $p_T^{j_3} < 25 \mathrm{GeV}$     | +2000 cuG + 2000 cdG + 5000 c3G + c2G(-20cH - 30cu + 10cuG + 30c3G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   | $+c3G(-10cH+20cu+30cuG) + \tilde{c}'_g(4000tc3G)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\geq$ 2-jet VBF-like,            | $780(c_g'^2+c_{\tilde{g}}'^2)+540(\texttt{c3G}^2+\texttt{tc3G}^2)+950\texttt{c2G}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $p_T^{j_3} \ge 25 \mathrm{GeV}$   | $+ c_g'(1000 \texttt{cH} - 1000 \texttt{cd} + 2000 \texttt{cuG} - 1000 \texttt{cdG} + 5000 \texttt{c3G} + 3000 \texttt{c2G})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   | +c2G(-70cH-50cd-80cu-140cuG-50cdG-10c3G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | $+c3G(30cH + 20cu + 20cd + 30cuG + 20cdG) - \tilde{c}'_{a}(3000tc3G)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Cross-section region                                                           | $\sum_{ij} B_{ij} c_i c_j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $\tilde{j}_{3} \sim H_{aa} (\text{VDE like } \sigma^{j_{3}} < 25 \text{ CeV})$ | $8.4 {\rm cWW}^2 + 0.20 {\rm cB}^2 + 12 {\rm cHW}^2 + 0.22 {\rm cHB}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| $qq \rightarrow H qq (V \text{ BF-like}, p_T < 25 \text{ GeV})$                | +cWW(-0.48cB+1.7cHW-1.3cHB)+cHW(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1cHB)              |
|                                                                                | $14 {\tt cWW}^2 + 0.34 {\tt cB}^2 + 23 {\tt cHW}^2 + 0.42 {\tt cHB}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| $qq \rightarrow Hqq \text{ (VBF-like, } p_T^{j_3} \ge 25 \text{ GeV})$         | +cWW(-3.4cB+14cHW-4.3cHB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|                                                                                | +cB(-0.77cHW + 0.35cHB) + cHW(0.95cHB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                | $2400 {\rm cWW}^2 + 44 {\rm cB}^2 + 2200 {\rm cHW}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| $qq \to Hqq \ (p_T^j \ge 200 \text{ GeV})$                                     | + cWW (-1200 cB + 4300 cHW - 1200 cHB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                | +cB(-1100cHW + 79cHB) + cHW(-1100cHE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3)                   |
|                                                                                | $440 \mathrm{cWW}^2 + 8.7 \mathrm{cB}^2 + 200 \mathrm{cHW}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| $qq \to Hqq \ (60 \le m_{jj} < 120 \text{ GeV})$                               | +cWW(-270cB+520cHW-290cHB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
|                                                                                | +cB(-120cHW + 9.9cHB) + cHW(-130cHB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|                                                                                | $81 \mathrm{cWW}^2 + 1.5 \mathrm{cB}^2 + 25 \mathrm{cHW}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| $qq \to Hqq \text{ (rest)}$                                                    | +cWW(-45cB+56cHW-52cHB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|                                                                                | +cB(-9.0cHW+1.0cHB)+cHW(-9.5cHB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                | $120000 \texttt{cu}\texttt{G}^2 + 140000(\texttt{c3}\texttt{G}^2 + \texttt{tc3}\texttt{G}^2) + 33000(\texttt{c3}^2 + \texttt{tc3}^2) + 3000(\texttt{c3}^2 + \texttt{tc3}$ | $000$ c2G $^2$       |
| $gg/q\bar{q} \rightarrow ttH$                                                  | +cuG(110000c3G+50000c2G+400cu-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00cH)                |
|                                                                                | +c3G(-140000c2G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cross-section region |

| Cross-section region               | $\sum_{ij} B_{ij} c_i c_j$                                                                                                    |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $q\bar{q} \rightarrow H l \nu,$    | $310 \texttt{cWW}^2 + 61 \texttt{cHW}^2 + 36 \texttt{tcHW} + 170 \texttt{cpHQ}^2 + 170 \texttt{cHud}^2 + 1.1 \texttt{cpHL}^2$ |
| $p_T^V < 150 { m ~GeV}$            | +cH(-18cWW-6.1cHW-12cpHQ-1.0cpHL)                                                                                             |
|                                    | +cWW(230cHW+460cpHQ-2.0cHud+34cpHL)                                                                                           |
|                                    | +cHW(170cpHQ+11cpHL)+cpHQ(24cpHL)                                                                                             |
| $q\bar{q} \rightarrow H l \nu,$    | $1600 {\tt cWW}^2 + 870 {\tt cHW}^2 + 1200 {\tt cpHQ}^2 + 1300 {\tt cHud} + 160 {\tt tcHW}^2$                                 |
| $150 \le p_T^V < 250 \text{ GeV},$ | +cH(-33cWW-26cHW-26cpHQ+2200cHW)                                                                                              |
| 0 jets                             | +cWW(2800cpHQ+3.0cHud+88cpHL+7.0cuW+12clW)                                                                                    |
|                                    | +cHW(1900cpHQ+3.0cHud+49cpHL)-cHud(-4.0cpHL)                                                                                  |
|                                    | +cpHQ(-5.0cHud+68cpHL+4.0cuW-3.0cdW+6.0clW)                                                                                   |
| $q\bar{q} \rightarrow H l \nu,$    | $1500 {\tt cWW}^2 + 800 {\tt cHW}^2 + 1100 {\tt cpHQ}^2 + 1200 {\tt cHud}^2 + 150 {\tt tcHW}^2$                               |
| $150 \le p_T^V < 250 \text{ GeV},$ | +cH(-29cWW-23cHW-35cpHQ)+cHud(5.0cdW)                                                                                         |
| $\geq 1$ jet                       | +cWW(2000cHW+2600cpHQ+70cpHL-3.0cdW)                                                                                          |
|                                    | +cHW(1800cpHQ+41cpHL)+cpHQ(65cpHL-4.0cuW-7.0cdW)                                                                              |
| $q\bar{q} \rightarrow H l \nu,$    | $16000 \texttt{cWW}^2 + 14000 \texttt{cHW}^2 + 15000 \texttt{cpHQ}^2 + 16000 \texttt{cHud}^2 + 520 \texttt{tcHW}^2$           |
| $p_T^V \ge 250 \text{ GeV}$        | +ch(-80cWW - 70cHW - 100cpHQ) + chW(29000cpHQ + 190cpHL) 17                                                                   |
|                                    | +cWW(30000cHW+32000cpHQ+70cHud+210cpHL)+cpHQ(180cpHL)                                                                         |
|                                    |                                                                                                                               |

| Cross-section region               | $\sum_{ij} B_{ij} c_i c_j$                                                                                                                                |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $q\bar{q} \rightarrow Hll,$        | $4.0 {\tt cT}^2 + 240 {\tt cWW}^2 + 20 {\tt cB}^2 + 34 {\tt cHW}^2 + 3.0 {\tt cHB}^2 + 170 {\tt cHQ}^2 + 170 {\tt cpHQ}^2$                                |
| $p_T^V < 150 { m ~GeV}$            | $+ 100 \texttt{cHu}^2 + 75 \texttt{cHd}^2 + 1.3 \texttt{cHL}^2 + 1.3 \texttt{cpHL}^2 + 26 \texttt{tcHW}^2 + 2.3 \texttt{tcHB}^2$                          |
|                                    | + cH(2.0cT - 15cWW - 4.3cB - 4.4cHW - 1.3cHB + 1.0cHQ - 12cpHQ                                                                                            |
|                                    | -2.3 cHu + 0.8 cHd + 0.48 cHL - 1.0 cpHL) + cT(-59 cWW - 17 cB                                                                                            |
|                                    | -17cHW $-5.1$ cHB $+2.5$ cHQ $-46$ cpHQ $-11$ cHu $+3.7$ cHd $+1.9$ cHL                                                                                   |
|                                    | -4.1 cpHL + 0.46 cHe) + cWW(140 cB + 150 cHW + 44 cHB + 0.5 cA - 17 cHQ)                                                                                  |
|                                    | +390cpHQ $+82$ cHu $-31$ cHd $-14$ cHL $+33$ cpHL $-3.3$ cHe $+0.6$ cdB                                                                                   |
|                                    | +0.9 cdW + 0.8 clB - 1.0 clW) + cB(42cHW + 12cHB - 2.8cHQ + 110cpHQ                                                                                       |
|                                    | + 31 cHu - 12 cHd - 4.6 cHL + 8.3 cpHL - 1.2 cHe) + cHW(20 cHB - 5.3 cHQ)                                                                                 |
|                                    | +120 cpHQ + 29 cHu - 11 cHd - 4.1 cHL + 8.8 cpHL - 0.8 cHe) + cHB(-1.2 cHQ)                                                                               |
|                                    | + 37 cpHQ + 8.8 cHu - 3.5 cHd - 1.2 cHL + 2.6 cpHL) + cHQ(-50 cpHQ - 1.0 cHd)                                                                             |
|                                    | +0.8 cHL-0.4 cuB) + cpHQ(-1.0cHu-0.6cHd-12cHL+24cpHL-2.0cHe)                                                                                              |
|                                    | +1.0 cuB+1.0 cdW+1.0 clB+1.0 clW)+cHu(-2.3 cHL+4.9 cpHL+0.6 cuB)                                                                                          |
|                                    | +1.5cuW) + cHd(1.2cHL - 2.2cpHL) + cHL(-0.53cpHL) + tcHW(15tcHB)                                                                                          |
| $q\bar{q} \rightarrow Hll,$        | $4.0 \texttt{cT}^2 + 1000 \texttt{cWW}^2 + 90 \texttt{cB}^2 + 480 \texttt{cHW}^2 + 43 \texttt{cHB}^2 + 1200 \texttt{cHQ}^2 + 12000 \texttt{cPHQ}^2$       |
| $150 \le p_T^V < 250 \text{ GeV},$ | $+680 \texttt{cHu}^2 + 490 \texttt{cHd}^2 + 120 \texttt{tcHW}^2 + 10 \texttt{tcHB}^2 + \texttt{cH}(-24 \texttt{cWW} - 9.0 \texttt{cB} - 20 \texttt{cHW})$ |
| 0 jets                             | -5.1 cHB + 11 cHQ - 25 cpHQ - 11 cHu + 2.0 cHd + cT(-120 cWW - 36 cB)                                                                                     |
|                                    | -75 cHW - 22 cHB + 13 cHQ - 120 cpHQ - 29 cHu + 9.0 cHd - 4.2 cpHL)                                                                                       |
|                                    | + cWW(610 cB + 1300 cHW + 400 cHB - 150 cHQ + 2100 cpHQ + 470 cHu                                                                                         |
|                                    | -170 cHd - 24 cHL + 55 cpHL + 7.0 cuB + 10 cuW + 14 cdW + 30 clW)                                                                                         |
|                                    | +cB(380cHW+110cHB-39cHQ+600cpHQ+160cHu-59cHd-9.4cHL                                                                                                       |
|                                    | $+19 {\tt cpHL} - 2.2 {\tt cHe}) + {\tt cHW}(290 {\tt cHB} - 78 {\tt cHQ} + 1300 {\tt cpHQ} + 320 {\tt cHu} - 110 {\tt cHd})$                             |
|                                    | -18 cHL + 41 cpHL - 3.0 cHe - 2.0 cdB) + cHB(-21 cHQ + 400 cpHQ + 96 cHu)                                                                                 |
|                                    | -34 cHd - 5.1 cHL + 12 cpHL) + cHQ(-380 cpHQ + 30 cHu + 2.0 cHd + 14 cHL                                                                                  |
|                                    | -6.0 cHe + 25 cuB + 24 cdB + 10 cdW - 3.0 clB + 4.0 clW) + cpHQ(10 cHu)                                                                                   |
|                                    | -40 cHL + 80 cpHL - 7.0 cHe + 3.0 cdW + 30 clB - 3.0 clW) + cHu(14 cpHL)                                                                                  |
|                                    | $+3.0 tm{CHe} - 8.0 tm{CuB} + 8.0 tm{CdB} + 8.0 tm{CdW} + 13 tm{ClB} + 7.0 tm{ClW}$                                                                       |
|                                    | +cHd(9.0cHL + 3.0cpHL - 4.0cuB - 3.0clB - 6.0clW) + 69tcHWtcHB                                                                                            |

| Cross-section region               | $\sum_{ij} B_{ij} c_i c_j$                                                                                                                       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $q\bar{q} \rightarrow Hll,$        | $4.0 \texttt{cT}^2 + 960 \texttt{cWW}^2 + 82 \texttt{cB}^2 + 440 \texttt{cHW}^2 + 39 \texttt{cHB}^2 + 1100 \texttt{cHQ}^2 + 1100 \texttt{cHQ}^2$ |
| $150 \le p_T^V < 250 \text{ GeV},$ | +640 cHu <sup>2</sup> + 430 cHd <sup>2</sup> + 110 tcHW <sup>2</sup> + 9.7 tcHB <sup>2</sup> + cH(2.1 cT - 23 cWW - 8.1 cB)                      |
| $\geq 1$ jet                       | -18 cHW - 4.9 cHB - 36 cpHQ - 2.0 cHu) + cT(-110 cWW - 34 cB - 71 cHW                                                                            |
|                                    | -20 cHB + 4.0 cHQ - 120 cpHQ - 24 cHu + 10 cHd + 2.0 cHL - 4.2 cpHL)                                                                             |
|                                    | + cWW(560 cB + 1200 cHW + 340 cHB - 200 cHQ + 1900 cpHQ + 440 cHu                                                                                |
|                                    | -150 cHd - 24 cHL + 68 cpHL + 3.0 cHe + 5.0 cuB + 3.0 cuW - 3.0 cdB                                                                              |
|                                    | -10 cdW - 10 clW) + cB(330 cHW + 100 cHB - 30 cHQ + 550 cpHQ + 140 cHu                                                                           |
|                                    | -52 cHd - 9.6 cHL + 17 cpHL - 2.3 cHe) + cHW(260 cHB - 120 cHQ)                                                                                  |
|                                    | $+1200 {\tt cpHQ} + 290 {\tt cHu} - 100 {\tt cHd} - 20 {\tt cHL} + 29 {\tt cpHL} - 10 {\tt cHe} - 5.0 {\tt cuB}$                                 |
|                                    | +2.0 cuW+2.0 cdB-3.0 cdW)+cHB(-30 cHQ+360 cpHQ+85 cHu-30 cHd)                                                                                    |
|                                    | -4.8 cHL + 11 cpHL) + cHQ(-420 cpHQ - 20 cHd + 17 cHL + 23 cHe + 3.0 cuB                                                                         |
|                                    | +17cuW+6.0cdW+30clB+10clW)+cpHQ(-6.0cHd-40cHL+20cpHL                                                                                             |
|                                    | -20 cHe + 10 cuB - 10 cuW - 3.0 cdB + 10 clW) + cHu(-6.0 cHL + 13 cpHL)                                                                          |
|                                    | -3.0 cHe + 10 cuB + 4.0 cdB + 10 cdW + 4.0 clB) + cHd(-8.0 cHL - 7.0 cHe)                                                                        |
|                                    | -5.0 cdB - 2.0 clB + 3.0 clW) + tcHW(65 tcHB)                                                                                                    |
| $q\bar{q} \rightarrow Hll,$        | $9600 \texttt{cWW}^2 + 850 \texttt{cB}^2 + 8000 \texttt{cHW}^2 + 720 \texttt{cHB}^2 + 14000 \texttt{cHQ}^2 + 14000 \texttt{cpHQ}^2$              |
| $p_T^V \ge 250 \text{ GeV}$        | $+8600 \text{cHu}^2 + 5200 \text{cHd}^2 + 380 \text{tcHW}^2 + 35 \text{tcHB}^2 + \text{cH}(-80 \text{cWW} - 22 \text{cB})$                       |
|                                    | -50cHW $- 90$ cpHQ $- 30$ cHu) + cT $(-310$ cWW $- 90$ cB $- 250$ cHW $- 78$ cHB                                                                 |
|                                    | $-310 {\tt cpHQ} - 100 {\tt cHu} + 30 {\tt cHd}) + {\tt cWW} (5700 {\tt cB} + 17000 {\tt cHW} + 5100 {\tt cHB}$                                  |
|                                    | $-3200 {\tt cHQ} + 22000 {\tt cpHQ} + 5400 {\tt cHu} - 1700 {\tt cHd} - 70 {\tt cHL} + 160 {\tt cpHL}$                                           |
|                                    | -30cHe $-30$ cdW $+20$ clB $-30$ clW $) + cB(5100$ cHW $+1500$ cHB $-880$ cHQ                                                                    |
|                                    | $+ 6400 {\tt cpHQ} + 1700 {\tt cHu} - 500 {\tt cHd} + 48 {\tt cpHL}) + {\tt cHW} (4800 {\tt cHB} - 2900 {\tt cHQ})$                              |
|                                    | $+19000 {\tt cpHQ} + 4900 {\tt cHu} - 1500 {\tt cHd} - 50 {\tt cHL} + 130 {\tt cpHL}) + {\tt cHB}(-870 {\tt cHQ})$                               |
|                                    | $+5700 {\tt cpHQ} + 1500 {\tt cHu} - 430 {\tt cHd} + 37 {\tt cpHL}) + {\tt cHQ}(-6700 {\tt cpHQ} - 70 {\tt cHu})$                                |
|                                    | +50 cHd - 30 cHL - 50 cpHL - 40 cuB - 30 cdB - 30 cdW - 30 clW)                                                                                  |
|                                    | + cpHQ(50cHd + 220cHL - 30cHe - 50cuB - 50cdW - 110clB - 70clW)                                                                                  |
|                                    | $+ \mathtt{cHu}(-30 \mathtt{cHL} + 70 \mathtt{cpHL} - 20 \mathtt{cuW} - 30 \mathtt{cdW}) + \mathtt{cHd}(30 \mathtt{cHL} + 40 \mathtt{cHe})$      |
|                                    | +tcHW(230tcHB)                                                                                                                                   |

# **Future plans**

### End of this year

Post draft notes on STXS and STXS $\rightarrow$ EFT equations with follow-up meetings Implement first EFT fit in combined channels Initiate discussion of benchmark results for individual analyses (including PO)

**Early next year** Expand EFT equations to Warsaw basis & add HH production Define binning for Higgs+EW fit Post draft note on benchmarks

#### Sometime next year

Follow-up EFT fit with more complete set of Higgs & EW measurements (ideally in two bases to test the translations) Update EFT equations to include NLO QCD, running couplings & uncertainties Discuss expanding EFT fits to top (and QCD) measurements

### **Eventually**

Full combination of Run 2 ATLAS+CMS STXS measurements and EFT fits

# Next WG2 meeting?

Countdown to Online Physics Brawl Nov 29, 2017 at 5:00 pm