

WG2: FIDUCIAL/DIFFERENTIAL/SIMPLIFIED/TEMPLATE XS

Experimental results, developments, open points, discussions...

P. Milenovic (CERN) Higgs Days @ Santander, 18-22 September, 2017

Preface

Higgs discovery: Triumph of LHC and its experiments @ Run I **Excellence of LHC/experiments:** Enabled rich physics program @13 TeV in Run 2

Plethora of SM measurements and searches for new physics:

Run 2: Exploit the Higgs boson as a tool to probe for new physics

From measurements to interpretations...

From measurements to interpretations...

LHC DATA

Goals

Minimize dependence on theory systematics in measurements:

Clearer and systematically improvable treatment at interpretation level (acceptance corrections, extrapolations to total xsec, ...)

Minimize model dependence in measurements:

Decouples measurements from discussions about specific models (SM, linear/nonlinear EFT, BSM models, ...)

Measurements stay long-term useful:

Maximize usability of the LHC data

Allows easy (re)interpretation with different theory inputs/assumptions:

Improved theory predictions/uncertainties (µi, Ki, anomalous couplings, EFT coefficients, specific BSM scenarios, ...)

modifiers

Thin line between fiducial and simplified XS

Fiducial XS: Optimized for max. theory independence	Good
Minimize acceptance corrections	•
Simple (rectangular) signal cuts	•
"Exact" fiducial volume	•
Fiducial in Higgs decay	٠
Targeted object definitions	•
Agnostic to production modes	
(Single-)differential distributions (overlapping events)	
Mostly $H \rightarrow \gamma\gamma$, ZZ, (WW) (by default no combination of channels)	

- Complementary roles, but several common issues
 - Treatment of out-of-acceptance corrections, presentation of results, ...

Simplified XS: sensitivity + reduced theory dependence

Allow larger acceptance corrections Allow event categories, MVAs, ... Abstracted/simplified fiducial volumes Inclusive in Higgs decay Common idealized object definitions

Split by production mode

Split into mutually exclusive regions of phase space

Explicitly designed for combination of all decay channels

Thin line between fiducial and simplified XS

Fiducial Optimized for max. the	XS: ory independence	Good					
Minimize acceptanc	e corrections	٠					
Simple (rectangula	r) signal cuts	•					
"Exact" fiducia	l volume	٠					
Fiducial in Hig	Fiducial in Higgs decay						
Targeted obje							
Agnostic to pro (Single-)different (overlappin	Simplified temp are si differential s with pre-de (based on SP	olate cro milar t signal st efined l 1 assun					
Mostly $H \rightarrow \gamma\gamma$, z (by default no combinat	L, (W W) tion of channels)						

- Complementary roles, but several common issues
- Treatment of out-of-fiducial corrections, presentation of results, ...

Simplified XS: sensitivity + reduced theory dependence

Allow larger acceptance corrections Allow event categories, MVAs, ... Abstracted/simplified fiducial volumes Inclusive in Higgs decay

d object definitions

oss sections 0 trengths binning nptions).

luction mode

ually exclusive phase space

icitly designed for combination of all decay channels

Fiducial cross sections and unfolded distributions

WG2: Fiducial, differential, and simplified template XS

Latest fiducial XS measurements : $H \rightarrow 4\ell$

Measurements of fiducial cross sections:

• Not sensitive to production mechanism, expected to be dominated by gluon fusion

Fiducial XS @ 7, 8, I3 TeV

Compatible with theoretical estimates within existing uncertainties

Fiducial XS @ 13 TeV

Latest fiducial XS measurements : $H \rightarrow \gamma\gamma$

Measurements of fiducial cross sections:

• Not sensitive to production mechanism, expected to be dominated by gluon fusion

Fiducial XS @ I3 TeV

Latest fiducial XS combination : $H \rightarrow \gamma \gamma + H \rightarrow ZZ \rightarrow 4I$

Combined measurements of fiducial cross sections:

• Reasonable agreement among H \rightarrow 4I and H $\rightarrow \gamma\gamma$ for low statistics (13.3 fb⁻¹ @ 13 TeV), p-value > 56%

Reminder: Differential fiducial XS in Run I

• Differential fiducial XS @ 8 TeV for pT(H) in H $\rightarrow \gamma\gamma$, ZZ, W W channels:

• Sensitive to modelling of hard quark and gluon radiation, relative contributions of different production modes, BSM effects in the loops, etc.

Latest differential fiducial XS : $H \rightarrow 4\ell$

Differential fiducial XS @ I3 TeV:

- Differential measurements for: $p_T(4I)$, N(jets), $p_T(jet)$, and also Y(4I), m_{34} , ...
- Sensitive to modelling of hard quark and gluon radiation, relative contributions of different production modes, BSM effects in the loops, PDFs, etc.

WG2: Fiducial, differential, and simplified template XS

рт(4I) : ATLAS

Latest differential fiducial XS : $H \rightarrow 4\ell$

Differential fiducial XS @ I3 TeV:

- Differential measurements for: $p_T(4I)$, N(jets), $p_T(jet)$, and also Y(4I), m_{34} , ...
- Sensitive to modelling of hard quark and gluon radiation, relative contributions of different production modes, BSM effects in the loops, PDFs, etc.

WG2: Fiducial, differential, and simplified template XS

Latest differential fiducial XS : $H \rightarrow YY$

Differential fiducial XS @ I3 TeV:

- Differential measurements for: $p_T(\gamma\gamma)$, N(jets), $p_T(jet)$, Y($\gamma\gamma$), $|\cos\theta^*|$, $\Delta\phi(jj)$, ...
- Sensitive to modelling of hard quark and gluon radiation, relative contributions of different production modes, BSM effects in the loops, PDFs, etc.

$Y(\gamma\gamma): ATLAS$

WG2: Fiducial, differential, and simplified template XS

$|\cos(\theta^*)|$: ATLAS

Latest differential fiducial XS : $H \rightarrow \gamma \gamma$

Differential fiducial XS @ I3 TeV:

• Differential measurements for: $p_T(\gamma\gamma)$, N(jets), $p_T(jet)$, Y($\gamma\gamma$), $|\cos\theta^*|$, $\Delta\phi(jj)$, ...

Differences between ATLAS and CMS

Definition of the fiducial-level objects and fiducial phase space

Treatment in case of observables with poor resolution

Treatment of the model (in)dependance and unfolding strategies

Choice of the alternative models, Treatment of the out-of-acceptance contributions

Choice of observables and harmonisation of binning

Production or decay-level observables, binning criteria, etc.

Presentation of the results, and how to provide information to theorists Correlation matrices, availability in HEP, etc.

ferent production modes,

 $\rightarrow \gamma \gamma$, $\sqrt{s} = 13 \text{ TeV}$, 36.1 fb⁻¹

data, tot. unc. syst. unc.

 $gg \rightarrow H$ default MC + XH

XH = VBF + VH + ttH + bbH

 $gg \rightarrow H$ SCETlib+MCFM8 + XH

 $m_{\mu} = 125.09 \text{ GeV}$

ATLAS

Choice of differential observables and binning

Observables considered:

- **ID** distributions: **р**_т(**H**), **N**(jets), |**Y**(**H**)|, **р**_т(jet I), рт(jet 2), |рт(H) - рт(jet I)|, |Y(H) - Y(jet I)|, |Y(jet I) - Y(jet 2)|, М_{jj}.
- 2D distributions: $p_T(H) \times N(jets), p_T(H) \times |Y(H)|$.

Still need to agree on the exact set of **ID/2D** variables.

Binning:

- Need to have aligned coarse bin boundaries
- Criteria for bin boundaries related to the uncertainty on the expected yields
 - ATLAS: having > 2 sigma expected significance in each bin,
 - CMS: somewhat stronger requirement on the exp. signal yield uncertainty, <u>Exceptions</u>: overflow or boundary bins., match STXS boundaries if possible (for convenience)

Experiments have agreed (or are about to agree) on the bin boundaries.

Core Results / Nice to have

Choice of binning boundaries

Possible binning scenarios (ATLAS/CMS)

Binning for p_T(H):

Η→γγ:	0	10	15	20	30	45	60	80
H→4I:	0	10	15	20	30	45	60	80

• Binning for |y(H)|:

Η→γγ:	0	0.15	0.3	0.45	0.6	0.75
H→4I:	0	0.15	0.3	0.45	0.6	0.75

Binning for p_T(lead jet):

Η→γγ:	30	40	55	75	95
H→4I:	30	40	55	75	95

• Discussion on other observables and binning is ongoing...

WG2: Fiducial, differential, and simplified template XS

		bound ar	t ries ies					
0 120	155	200	260	350				
0 120	155	200	260	350				
0.9	1.2	١.6	2	2.5				
0.9	1.2	1.6	2	2.5				
Jet Definition anti-kt dR=0.4, 30 need to decide on centrality								
120	20	0	350					
120	20	0	350		F			

Definition of fiducial region

Fiducial regions:

• Too many differences in ATLAS and CMS analyses/regions (p_T and η cuts, isolation, etc.):

There is no need to aim the same fiducial phase space definitions.

- Combined measurement with different fiducial definitions:
 - by extrapolation to the full phase space with restriction |y(H)| < 2.5Easiest, additional model dependence, makes sense for $H \rightarrow \gamma \gamma + H \rightarrow 4I$ combination. Fiducial with |y(H)| < 2.5 is interesting as it's experimentally accessible part of phase space.

Any comment?

Might also consider combination:

in "common" part or the "minimal enclosing" part of the phase space Not easy to find for different channels, less add. model dependence, makes sense for individual $H \rightarrow \gamma \gamma$ and $H \rightarrow 4I$ - proposal that this is not an initial priority.

Fiducial requirements & observables with poor resolution

To be studied in each analysis:

- How to define the fiducial phase space when observables used to define the signal region have **poor** experimental resolution (missing E_T, jet p_T, etc.)?
 - Effects of migration of signal events can be large
 - Subtraction of non-fiducial signal events is model dependent
- Study if relaxing fiducial requirements can reduce model dependence.

Aspects of fiducial measurements agreed/discussed

Signal definitions:

- Perform measurement for the processes via the Higgs resonance. Subtract non-resonant contributions in $pp \rightarrow (H \rightarrow)\gamma\gamma$, $pp \rightarrow (H \rightarrow)ZZ \rightarrow 4I$, $pp \rightarrow (H \rightarrow)WW \rightarrow 2I2v$
- Measurement for the fiducial $pp \rightarrow 4l$ and $pp \rightarrow 2l2v$ production also important in the long term.

Out-of-acceptance contributions:

• Arise from imperfect experimental resolution. Related directly to the model dependance. Experiments aim to agree on the common approach how to subtract it from the signal.

Other aspects discussed:

- Model dependance: From variation of relative fraction of SM production modes within exp. constraints.
- Treatment of m(H): Aim to agree weather to fix m(H) as as ext. parameter, or to float it as a nuisance.
- Unfolding: Desirable to be able to use likelihood fits with embedded response matrix.

Aspects of fiducial measurements agreed/discussed

Results and their presentation:

- Comparisons to theory predictions: follow (post-)YR4 prescriptions (e.g. use N³LO QCD for the ggH normalisation, and NNLO+NNLL QCD for shape).
- Presentation of central values, uncertainties, correlations to be in line with STXS presentation (see later).

Approaches to combination:

• by extrapolation to the full phase space with restriction |y(H)| < 2.5. Easiest, some additional model dependence, makes sense for $H \rightarrow \gamma \gamma + H \rightarrow 4I$ combination.

Combined measurements:

- Individual channels: $H \rightarrow 4I$, $H \rightarrow \gamma \gamma$ (also $H \rightarrow WW$ for $p_T(H)$ and N(jets) if/once available)
- Combined all together: $H \rightarrow 4I + H \rightarrow \gamma \gamma$ (+ $H \rightarrow WW$ for $p_T(H)$ and N(jets) if/once available)

Simplified template (ST) XS

WG2: Fiducial, differential, and simplified template XS

Thin line between fiducial and simplified XS

Op	Fiducial XS: otimized for max. theory independence	e Good
)	Minimize acceptance corrections	•
•	Simple (rectangular) signal cuts	•
•	"Exact" fiducial volume	•
	Fiducial in Higgs decay	•
	Targeted object definitions	•
	Agnostic to production modes	
	(Single-)differential distributions (overlapping events)	
	Mostly $H \rightarrow \gamma\gamma$, ZZ, (WW)	

(by default no combination of channels)

- Complementary roles, but several common issues
 - Treatment of out-of-fiducial corrections, presentation of results, ...

Simplified XS: sensitivity + reduced theory dependence

Allow larger acceptance corrections Allow event categories, MVAs, ... Abstracted/simplified fiducial volumes Inclusive in Higgs decay Common idealized object definitions

Split by production mode

Split into mutually exclusive regions of phase space

Explicitly designed for combination of all decay channels

STXS framework

Analysis categories

WG2: Fiducial, differential, and simplified template XS

ggH binning (stage I)

Initial choice of the binning:

- Jet bins motivated by experimental analyses
- High $p_T(H)$ bins target boosted categories (e.g. TT, bb) and BSM overflow
- VBF-like cuts to constrain ggH contribution in VBF categories

by Frank Tackmann

d BSM overflow

ggH binning (stage I)

Proposed updates in the choice of the binning:

- Split highest $p_T(H)$ bins into [200, 500] and [500, ∞] to have a dedicated bin for boosted $H \rightarrow bb$
- Also allow for possibly split at $2m_{top}$ into [200, 350] and [350, 500] GeV
- Thinking about options to further resolve low-p_T region
 - One option is to split the 0-jet bin into $p_T(H) \leq 10...20$ GeV

WG2: Fiducial, differential, and simplified template XS

by Frank Tackmann

VBF binning (stage I)

Choice of the binning:

- VBF defined as electroweak qqH production
 - including usual VBF process and VH with hadronic V decays
- First split by $p_T(j_1)$
 - VBF topology cuts: $m_{ii} > 400$ GeV and $\Delta \eta_{ii} > 2.8$ (no other cuts)
 - V (\rightarrow jj)H topology cuts: 60 GeV < m_{ii} < 120 GeV
 - **Rest**: Everything not passing above (including events with < 2 jets)

WG2: Fiducial, differential, and simplified template XS

by Frank Tackmann

VH / ttH / bbH / tH binning (stage I)

VH binning:

- "VH" is defined as $pp \rightarrow V (\rightarrow leptons)H$ process
 - split into $qq \rightarrow W (\rightarrow Iv)H$, $qq \rightarrow Z(\rightarrow II, vv)H$, and $gg \rightarrow Z(\rightarrow II, vv)H$

ttH / tH binning:

- - to separately target non-boosted and boosted H or top analyses

bbH binning:

• No experimental sensitivity/distinction from ggH, so merged with ggH

Binning and experimental challenges

Defined different stages for each production mode :

- Stage 0: Closest correspondence to Run I
- Stage I: Considered "minimal" splitting for Run 2 (more coarse scenario for early measurements)

Bin merging at early Run-2 measurements:

- Truth bins with no sensitivity from experimental measurement (e.g. no matching experimental selection or not (yet) enough statistics)
- Heavily correlated

•

(any bins that can not be disentangled from measurement, e.g.VBF-like ggH and true VBF)

WG2: Fiducial, differential, and simplified template XS

Early Run-2 results (stage 0): $H \rightarrow \gamma\gamma$ and $H \rightarrow 4I$

H→4I: 7 categories targeting 5 prod. modes:

$H \rightarrow \gamma \gamma$: 14 categories targeting 5/6 prod. modes:

WG2: Fiducial, differential, and simplified template XS

Kinematic regions for stage-I + intermediate merging:

Process	Measurement region	Stage 1 region
$ggH + gg \rightarrow Z(\rightarrow qq)H$	0-jet	0-jet
	1-jet, $p_{\mathrm{T}}^{H} < 60 GeV$	1-jet, $p_{\rm T}^H < 60 GeV$
	1-jet, $60 \le p_{\rm T}^H < 120 GeV$	1-jet, $60 \le p_{\rm T}^H < 120 GeV$
	1-jet, $120 \le p_{\rm T}^H < 200 GeV$	1-jet, $120 \le p_{\rm T}^H < 200 GeV$
	≥ 1 -jet, $p_{\mathrm{T}}^{H} > 200 GeV$	1-jet, $p_{\rm T}^{H} > 200 GeV$
		≥ 2 -jet, $p_{\mathrm{T}}^H > 200 GeV$
	≥ 2 -jet, $p_{\rm T}^H < 200 GeV$ or VBF-like	≥ 2 -jet, $p_{\mathrm{T}}^{\prime\prime} < 60 GeV$
		≥ 2 -jet, $60 \leq p_{T}^{H} < 120 GeV$
		≥ 2 -jet, $120 \leq p_{\rm T}^{H} < 200 GeV$
		VBF-like, $p_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_{T_$
		VBF-like, $p_{\rm T}^{H_{JJ}} > 25 GeV$
$qq' \to Hqq' \; (\text{VBF} + VH)$	$p_{\rm T}^j < 200 GeV$	$p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{VBF}\text{-like}, p_{\mathrm{T}}^{Hjj}$
		$p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{VBF}\text{-like}, p_{\mathrm{T}}^{Hjj}$
		$p_{\rm T}^j < 200 GeV, \text{VH-like}$
		$p_{\rm T}^j < 200 GeV, { m Rest}$
	$p_{\rm T}^j > 200 GeV$	$p_{\rm T}^j > 200 GeV$
VH (leptonic decays)	VH leptonic	$q\bar{q} \rightarrow ZH, p_{\rm T}^2 < 150 \ GeV$
		$q\bar{q} \rightarrow ZH, 150 \ GeV < p_{\rm T}^Z < 250$
		$q\bar{q} \rightarrow ZH, 150 \ GeV < p_{\rm T}^Z < 250$
		$q\bar{q} \rightarrow ZH, p_{\rm T}^Z > 250 GeV$
		$q\bar{q} \to WH, p_{\rm T}^W < 150 GeV$
		$q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 28$
		$q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 28$
		$q\bar{q} \to WH, p_{\rm T}^W > 250 \ GeV$
		$gg \to ZH, p_{\rm T}^{\rm Z} < 150 GeV$
		$gg \to ZH, p_{\rm T}^{\rm Z} > 150 \ GeV, 0\text{-jet}$
		$gg \rightarrow ZH, p_{\rm T}^{\rm Z} > 150 GeV, \geq 1-$
top-associated production	top	
		tHW
17.77		tHqb
bbH	merged w/ ggH	bbH

ATLAS

- Group together the BSM bins
- Not enough stats for ggH I vs. 2 jets
- No ggH/VBF discrimination

Group together ggH 2-jet bins

- Not enough stats for for $p_T(H)$ splits
- VBF-like ambiguous with real VBF

Group together VBF bins

- Group "VBF_REST" and "VH2JET" with better- measured VBF-like bins

Group together VH-lep bins

- Not enough stats for $p_T(V)$, N(jets) splits

Group tH with ttH Group bbH with ggH

Signal fraction in reco. categories, originating from given stage-I bins:

Signal fraction in reco. categories, originating from given stage-I bins:

large contributions from ggH

jet migration effects (acceptance, pile-up)

$H \rightarrow \gamma \gamma$: 31 category targeting 9 stage-1 bins:

Going beyond: Exploiting the cross section measurements...

WG2: Fiducial, differential, and simplified template XS

Exploiting differential XS: First examples...

- A combined analysis of several fiducial observables offers a unique probe to constrain NP effects
 - Complementary and more model independent to the simplified template XS (limited to a subset of channels)
 - Requires theory predictions which match the experimental sensitivity and determination of statistical correlations between observables.

- Exploiting several distributions with individually modest sensitivity can lead to stronger limits
- Consider also double-differential distributions

Exploiting differential XS: First examples...

- A combined analysis of several fiducial observables offers a unique probe to constrain NP effects
 - Complementary and more model independent to the simplified template XS (limited to a subset of channels)
 - Requires theory predictions which match the experimental sensitivity and determination of statistical correlations between observables.

		$pp \rightarrow H \rightarrow \gamma \gamma, \ \sqrt{s} = 8 \text{ TeV}, \ 20.3 \text{ fb}^{-1}$ ATLAS								100	
$N_{\rm jets}$	≥3	2.8 ± 1.0	2.0 ±1.0	5.2 ±1.0	5.2 ±1.0	7.9 ±1.0	10.4 ±1.0	10.5 ±1.0	20.9 ±1.0		80 80 80 06 100 [%]
	=2	4.7 ±1.1	7.3 ±1.1	9.0 ± 1.0	9.7 ±1.0	12.7 ±1.0	22.5 ±0.9	21.6 ±1.0	20.5 ±1.0		70 60 60 50
	=1	7.7 ± 1.0	14.3 ±1.1	23.0 ±1.1	29.4 ±0.9	28.6 ±0.9	30.0 ±0.9	19.4 ±1.0	15.3 ±1.0	;	0 tatistica
	=0	74.8 ±0.5	40.1 ± 1.0	23.0 ±1.2	12.5 ±1.2	4.1 ±1.0	3.7 ±1.0	-1.3 ±1.0	0.3 ±1.1		20 0. 10
		0-20	20-30	30-40	40-50	50-60	60-80	80-100 <i>ρ</i> η	100-200 ^γ [GeV]		U

Example: limits on sub-set of Willson's coefficients

- Exploiting several distributions with individually modest sensitivity can lead to stronger limits
- Consider also double-differential distributions

Exploiting differential XS: First examples...

- A combined analysis of several fiducial observables offers a unique probe to constrain NP effects
 - Complementary and more model independent to the simplified template XS (limited to a subset of channels)
 - Requires theory predictions which match the experimental sensitivity and determination of statistical correlations between observables.

Example: limits on pseudo-observables

- Exploiting several distributions with individually modest sensitivity can lead to stronger limits
- Consider also double-differential distributions

Towards (more complete) BSM/EFT interpretations

Higgs & NP effects:

- New particles and/or new production modes \rightarrow change of kinematics of H(125)
- May be tested via measured Fid/Diff. and also ST cross sections (internally by experiment, or externally by TH colleagues)

Need to facilitate BSM/EFT tests based on ST/Fid/Diff XS measurements

General tasks:

- Fid/Diff XS: Study sensitive observables and agree on required info/measurements to be published (minimal set of ID and 2D observables, their correlations, etc.)
- **ST XS:** Include bins with decay-level information.
- **ST XS:** Compare direct reach to EFT (via dedicated analyses with e.g. BDT/ME discriminants) with interpretation via ST/Fid/Diff XS measurements.
- Fid/Diff/ST XS: Provide tools (e.g. Rivet?) and agree on how to provide exp. results externally
- Determine a limited number of interpretation frameworks to complement ST/Fid/Diff. XS analyses (agree on the common benchmark BSM/EFT, to be used internally/externally)

Next steps...

Understanding of the true nature of Higgs boson is one of the central subjects in the particles physics today

• Future measurements @ 13/14 TeV and later @ HL-LHC could provides us with some hints, where Higgs boson might be a portal to the new physics phenomena.

Several important ways to interpret the measurements

- TH and EXP need to continue working together to be able to exploit maximum from the available data
- Also need to harmonise approaches between experiments.

Common effort within EXP/TH groups is the key

- Need to continue with the synergy among similar efforts (HXSWG2, Les Houches, HiggsTools, etc.)
- Plan for a common document/note with Fid/Diff/ST XS recommendations.

Additional material

WG2: Fiducial, differential, and simplified template XS

Theory uncertainties

Two aspects to theory (TH) uncertainties:

- Residual TH uncertainties related to "unfolding" (of experimental event categories to STXS bins)
- Uncertainties in interpretation of the measured STXS bins (when bins with diff. sensitivities are merged)

Need for coherent treatment:

- Implementation in terms of $\pm 100\%$ correlated or uncorrelated nuisance parameters
 - Parameterize individual sources within ggH,VBF, and VH uncertainties separately (identify/differentiate sources, evaluate their correlations, etc.)
 - Consider QCD and EWK contributions, proper correlation with inclusive cross section, etc.
- One goal is for interpretations to be able to easily use different predictions (work ongoing with Les Houches and LHCHXSWG colleagues, focus on stage-1 parametrization)

How to Provide Experimental Results

Assume Gaussian behavior is a good approximation :

- Case I: Provide full O(30)-dimensional covariance matrices separated by
 - Statistical uncertainties
 - Total experimental systematic uncertainties (interesting for better understanding)
 - Combined theoretical uncertainties, and separately specific theoretical uncertainties (that might have to be correlated between the measurement and the interpretation)
- Case 2: Keep the subset of nuisance parameters unprofiled (those where uncertainties that might be correlated between measurement and interpretation, and where the effect of a given uncertainty after profiling cannot be reasonably expressed as a covariance matrix)
- In case Gaussian approx. is not good for single STXS bin: Provide (parametrized) likelihood for these bins (Could be expected e.g. for weakly constrained bins)

Validation:

• Experiments will have to test if interpretations with these inputs possible (compare to interpretations using full likelihoods)