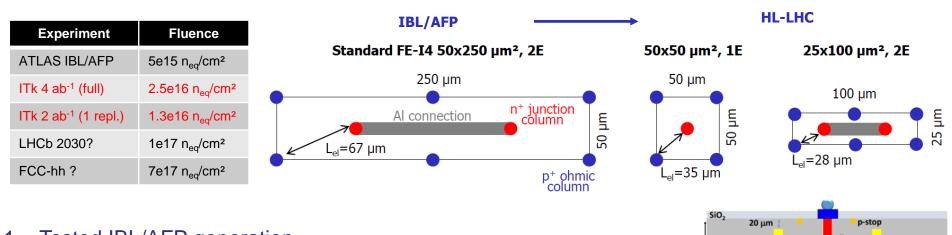
## **Radiation hardness of 3D pixel sensors up to unprecedented fluences of 3e16** n<sub>eq</sub>/cm<sup>2</sup>

Jörn Lange, Sebastian Grinstein, Stefano Terzo, David Vázquez Furelos

**IFAE Barcelona** 

Maria Manna, Giulio Pellegrini, David Quirion


**CNM-IMB-CSIC Barcelona** 

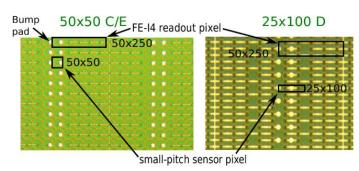
13<sup>th</sup> Trento Workshop, Munich, 19 February 2018





## **Towards Radiation-Hard 3D**




### 1. Tested IBL/AFP generation

- 230 µm thick, double-sided CNM process, 50x250 µm<sup>2</sup> 2E FEI4 pixels
- Radiation hardness demonstrated up to ITk fluence (9e15  $n_{eq}$ /cm<sup>2</sup>)

J. Lange et al., 2016 JINST 11 C11024

### 2. Develop prototype small-pitch 3D pixels matched to FEI4

- Pixel size 50x50 and 25x100  $\mu m^2$ 
  - Reduced electrode distance  $\rightarrow$  more radiation hard
  - Matched to 50x250  $\mu m^2$  chip pixel  $\rightarrow$  20% active area
- Double-sided 230 µm CNM run J. Lange et al., arXiv:1707.01045
  - This study: tested up to 3e16 n<sub>ed</sub>/cm<sup>2</sup> beyond full HL-LHC fluence
- 3. Produce RD53A 3D pixels (on-going)
  - "Real" 50x50 and 25x100 μm<sup>2</sup>
  - Different thicknesses 72-200 µm



8 um

нν

20 um

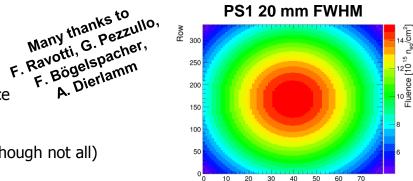
230 jun

D. Vázquez Furelos et al., 2017 JINST 12 C01026

HRFZ Si

> 5KΩ\*c

p-type

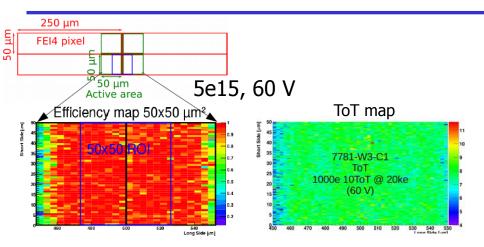

### **Beam Tests and Irradiations**



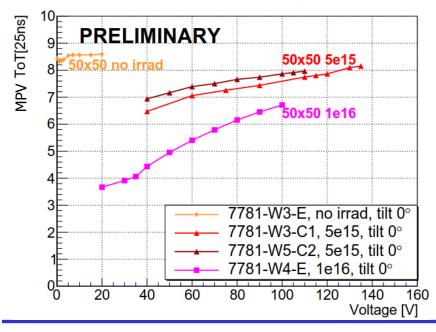
#### Irradiations

- KIT 23 MeV p: uniform 5e15 and 1e16 n<sub>ea</sub>/cm<sup>2</sup>
- PS IRRAD 23 GeV p: non-uniform 12 or 20 mm beam
   → allows probing a large range of fluences on single pixel device
  - Reached up to 3e16 n<sub>eq</sub>/cm<sup>2</sup>
- FEI4 chip survived harsh doses beyond specs in many cases! (though not all)

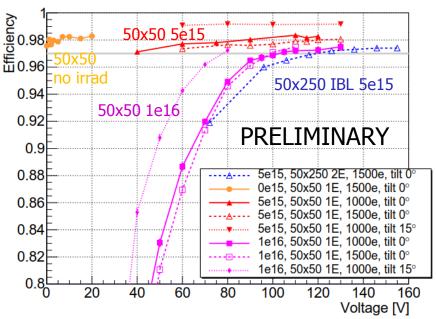
#### Many beam tests at CERN SPS H6, 120 GeV pions




Column


| Device            | Irradiations  | Fluence peak step           | Fluence peak total          | Annealing | Beam test    |
|-------------------|---------------|-----------------------------|-----------------------------|-----------|--------------|
|                   |               | [1e16 n <sub>eq</sub> /cm²] | [1e16 n <sub>eq</sub> /cm²] |           |              |
| 7781-W4-C1, 50x50 | PS1 20mm 2016 | 1.5                         | 1.5                         | 7d@RT     | Sep 2016     |
|                   | PS3 20mm 2017 | 1.1                         | 2.6                         | 18d@RT    | July 2017    |
|                   | PS4 20mm 2017 | 0.6                         | 3.1                         | 15d@RT    | Not working  |
| 7781-W5-C2, 50x50 | KIT1 2016     | 0.5                         | 0.5                         | 8d@RT     | Nov2016      |
|                   | PS3 20mm 2017 | 1.0                         | 1.5                         | 18d@RT    | Not working  |
| 7781-W3-C1, 50x50 | KIT1 2016     | 0.5                         | 0.5                         | 8d@RT     | Nov 2016     |
|                   | PS2 12mm 2016 | 0.7                         | 1.2                         | 15d@RT    |              |
|                   | PS3 20mm 2017 | 1.1                         | 2.3                         | 18d@RT    | July 2017    |
|                   | PS4 20mm 2017 | 0.5                         | 2.8                         | 15d@RT    | Oct 2017     |
|                   | PS5 20mm 2017 | 0.3                         | 3.1                         | 21d@RT    | 2018         |
| 7781-W4-E, 50x50  | KIT2 2017     | 1.0                         | 1.0                         | as irrad. | July2017     |
|                   |               |                             |                             | 7d@RT     | Sep+Oct 2017 |
| 7781-W3-E, 50x50  | Unirr.        |                             |                             |           | Sep 2017     |

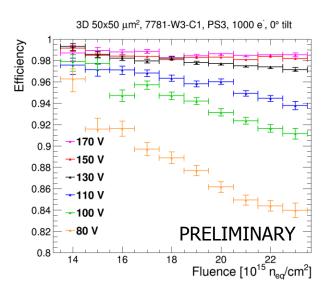
FRE<sup>9</sup> 19.02.2018, Jörn Lange: Radiation-hard 3D Detectors

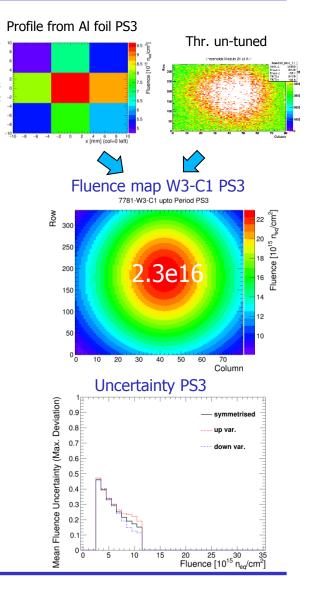

## **Before and After Uniform Irradiation**



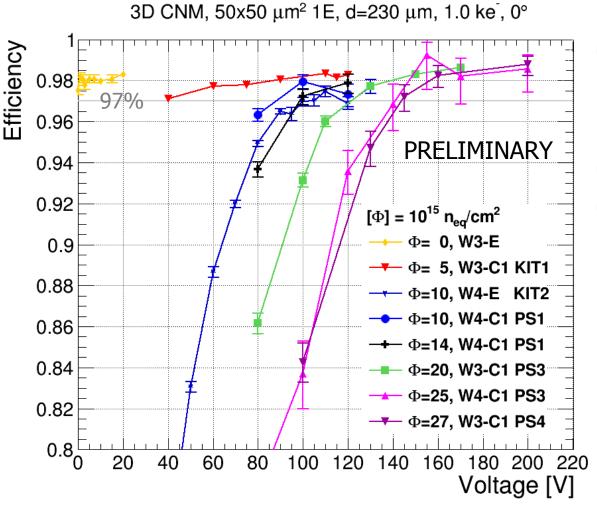
3D CNM, 50x50 µm<sup>2</sup> 1E, d=230 µm, 1ke<sup>-</sup> 10ToT@20ke, p irrad (KIT)




- ToT and efficiency very uniform over pixel
- ToT: high charge collection efficiency after irrad.
- Efficiency:
  - No bias voltage needed before irradiation: 98% at 0 V
  - 97% at 40 (100) V for 5e15 (1e16) n<sub>eq</sub>/cm<sup>2</sup> at 0° tilt
    - Significantly better than for standard IBL/AFP FEI4
    - Further improves at 15° tilt



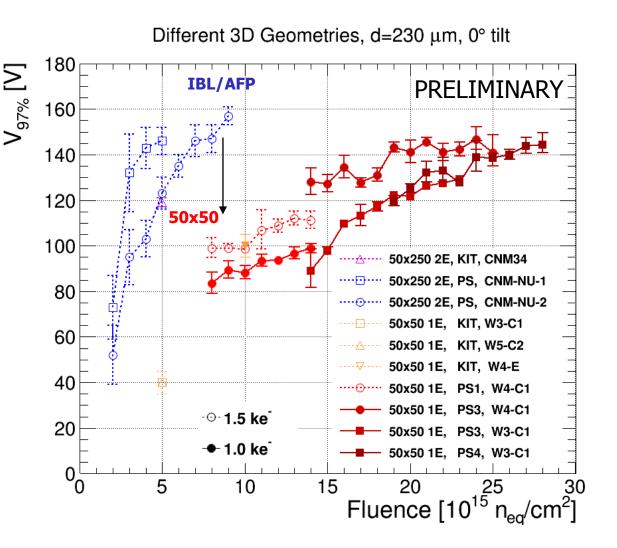

#### CNM 230 µm, p irrad (KIT)


## **PS Non-Uniform Irradiation - Methodology**

- Fluence normalization obtained with 20x20 mm<sup>2</sup> Al dosimetry foil
- Profile from
  - Beam profile monitors: 12-20 mm FWHM
  - Fluence maps by pixelating Al foil  $\rightarrow$  fit
  - Beam centre from Al foil or in-situ for 1<sup>st</sup> period (thr., noise etc.)
- Fluence uncertainty
  - Estimated from 1 mm variations in beam centre, width, Al position
  - 15-20% uncertainty at highest fluence, but ~50% at lowest fluence
- Efficiency as function of fluence on 1 device!
  - Expected behaviour
  - For compilation use only at (or close to) highest fluence with lowest uncertainty

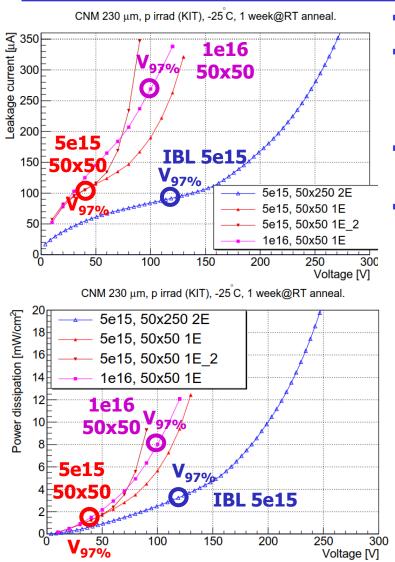




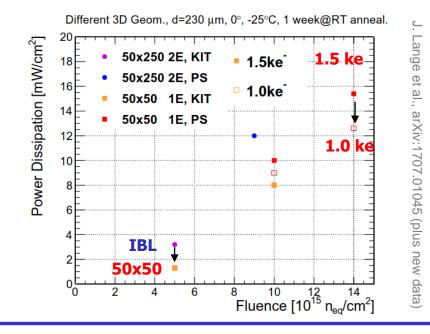

## **Efficiency vs. V Compilation**



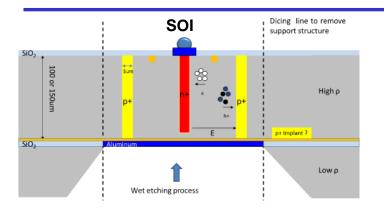
- Uniform irradiation (KIT) + nonuniform (PS) at highest fluence with lowest fluence uncertainty (~15-20%)
- PS+KIT agree at 1e16 n<sub>eq</sub>/cm<sup>2</sup>


98% plateau efficiency reached even after 2.7e16 n<sub>eg</sub>/cm<sup>2</sup>

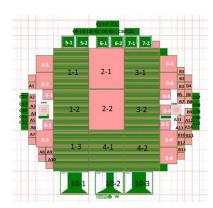
### **Operation Voltage vs. Fluence**

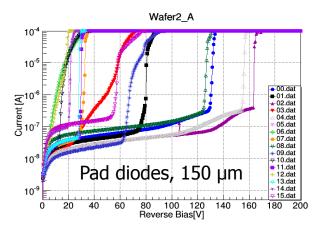


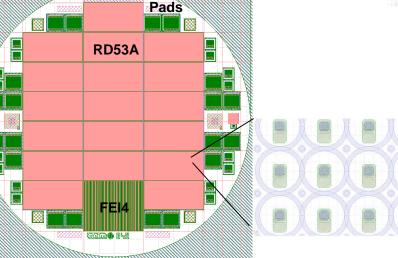

- V<sub>97%</sub>: estimate of operation voltage
- Highly improved operation voltage for 50x50 µm<sup>2</sup> 3D compared to IBL/AFP generation
- At ITk baseline fluence of 1.3e16 n<sub>eq</sub>/cm<sup>2</sup> only 100 V needed
  - Thin planar needs ~500 V
     N. Savic et al., JINST 11 (2016) C12008
- Even at 2.7e16 n<sub>eq</sub>/cm<sup>2</sup>: V<sub>97%</sub> < 150 V</li>


### **IV and Power Dissipation**




- Important parameters for thermal run away
- From one pixel device only extractable for uniform irrad. (KIT)
  - At fixed V, 50x50 µm<sup>2</sup> has higher I<sub>leak</sub>, but same at V<sub>97%</sub>
  - Power dissipation improves due to lower V<sub>97%</sub>
  - For non-uniform PS irradiation PS, V<sub>97%</sub> from test beam efficiency combined with n-irradiated 3D strip IV
  - Considerably lower P than for IBL 3D gen. and planar devices (25 mW/cm<sup>2</sup> at 1e16  $n_{eq}$ /cm<sup>2</sup>) N. Savic et al., JINST 11 (2016) C12008





## **New CNM 3D Runs: Thin + RD53A**



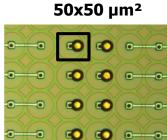
- Thin 3D run with small-pitch FEI4 prototypes just finished
  - 100 and 150 μm single-sided on SOI wafers
  - Probing and dicing on-going





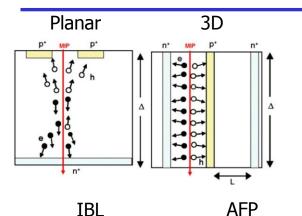


- 3D runs with RD53A sensors on-going
  - Single-sided 72, 100+150 μm on SOI and double-sided 200 μm
  - 50x50 μm<sup>2</sup> 1E, 25x100 μm<sup>2</sup> 1E and 2E
  - UBM + flip-chip to be done in-house by CNM + IFAE


 $\rightarrow$  expected to finish within 1-2 months

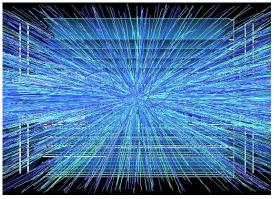
### **Conclusions and Outlook**

- Studied 230 µm CNM 3D production with small pixel size up to unprecedented fluences of 3e16 n<sub>eq</sub>/cm<sup>2</sup> beyond full ITk fluences
  - First time pixel devices irradiated to such high fluences (and survived)
  - Highly reduced operational voltage and power dissipation wrt. IBL/AFP generation and planar after irradiation
    - 98% efficiency at 0 V before irradiation
    - 97% efficiency at 100 V and 13 mW/cm<sup>2</sup> for 1.4e16  $n_{eq}$ /cm<sup>2</sup>  $\rightarrow$  safe operation at ITk baseline fluence (1 replacement)
    - 97% efficiency reached at <150 V after 2.7e16 n<sub>eq</sub>/cm<sup>2</sup>
    - No indication that limit has been reached...
- Single-sided thin (72-150 µm) 3D productions under way at CNM
  - Also with RD53A-chip geometry in addition to FEI4 prototypes
     → expected to have even better performance with new optimised readout chip


### **Unprecedented radiation hardness of 3D pixel detectors demonstrated**

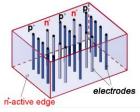
#### 6.mm 5.6um Aluminium p-type pad polysilicon Oxide barrier n-type polysilicon




### **BACKUP**

## **3D Silicon Pixel Detectors Overview**






HL-LHC



- 3D Silicon detectors: radiation-hard sensor technology
  - Electrode distance decoupled from thicknessS. Parker et al. $\rightarrow$  fast charge collection, trapping reducedS. Parker et al.
- Already applied in ATLAS IBL, AFP, CT-PPS
  - Radiation hardness up to 5e15 n<sub>eq</sub>/cm<sup>2</sup> required and proven
- Future HEP applications require more radiation hardness and small pixel sizes
  - HL-LHC pixel detectors (2024)
    - Full 4000 fb<sup>-1</sup>: 2.5e16 n<sub>eq</sub>/cm<sup>2</sup> innermost layer (ATLAS ITk)
       L. Rossi's talk
    - But FE chip not specified to be so radiation hard → Baseline requirement: 1.3e16 n<sub>eq</sub>/cm<sup>2</sup> (replacement of 2 inner layers)
    - 50x50 µm<sup>2</sup> or 25x100 µm<sup>2</sup> pixel size to cope with occupancy
  - FCC-hh (far future)
    - 7e17 n<sub>ed</sub>/cm<sup>2</sup> G. Kramberger's talk
- Aim: Develop new generation of ultra-radiation-hard 3D pixel detectors
   see also H. Oide's talk for FBK
  - In the framework of ATLAS HL-LHC pixel upgrade
  - But exploring limits of technology

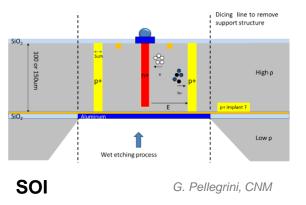
### **3D Detector Principle**

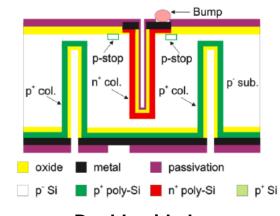




### Radiation-hard and active/slim-edge technology

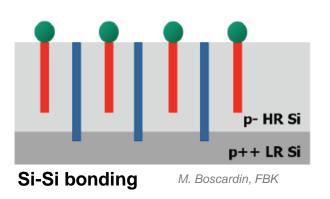
#### Advantages


- Electrode distance decoupled from sensitive detector thickness
  - $\rightarrow$  lower V<sub>depletion</sub>
    - $\rightarrow$  less power dissipation, cooling
  - $\rightarrow$  smaller drift distance
    - $\rightarrow$  faster charge collection
    - $\rightarrow$  less trapping
- Active or slim edges are natural feature of 3D technology

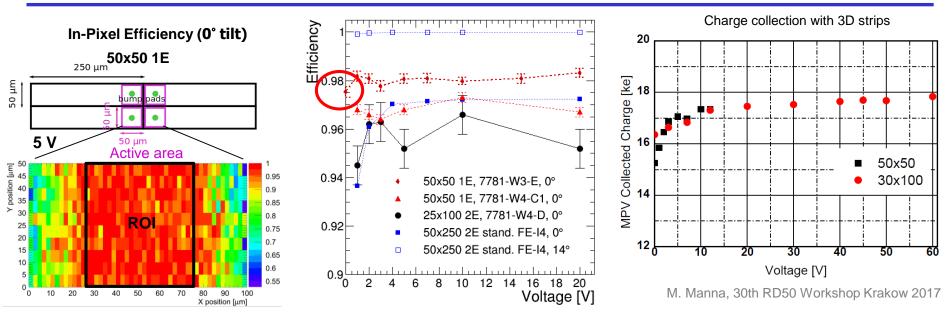

### Challenges

- Complex production process
   → long production time
  - $\rightarrow$  lower yields
  - $\rightarrow$  higher costs
- Higher capacitance
   → higher noise
- Non-uniform response from 3D columns and low-field regions → small efficiency loss at 0°

### **Different 3D Technologies**


- Double sided (available at CNM)
  - IBL/AFP-proven technology
  - No handling wafers needed
     → thickness limited to ≥200 µm and wafers to 4"
  - 3D columns ~8 µm diameter
- Single sided (available at FBK, SINTEF, CNM)
  - On handling wafer (SOI or Si-Si bonding)
     → 6" possible (FBK, SINTEF)
  - Active thickness range 50-150 µm being explored
  - Narrow 3D columns ~5 µm possible





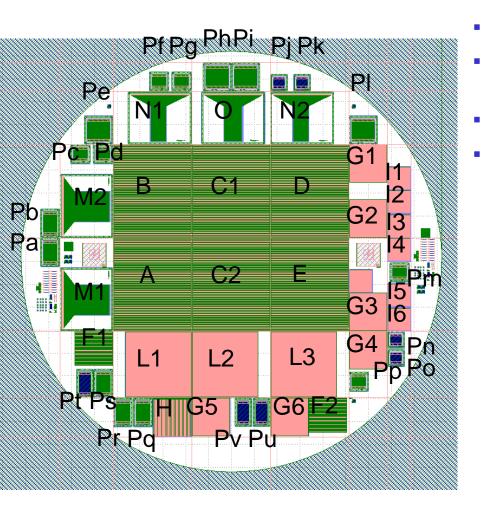

#### Double-sided

G. Pellegrini, CNM



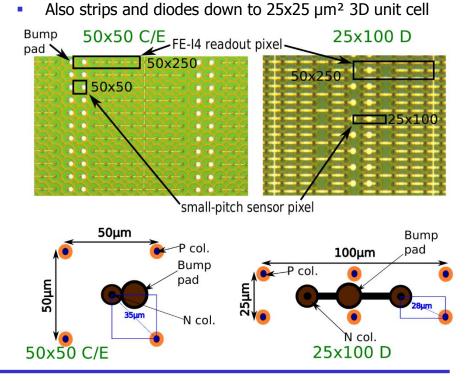
### **Efficiencies before Irradiation**




J. Lange et al., 2016 JINST 11 C11024 (plus new data)

#### Test beam with EUDET/AIDA telescope

- Reference tracks with few µm resolution


   → select Region of Interest (ROI) within active region
   and away from telescope resolution effects
- 98% plateau efficiency starting at **0 V!** 
  - Consistent with high charge collection at 0 V in small-pitch 3D strips
  - Thanks to small electrode distance (28-35 μm)

## **First Small-Pixel CNM Run for HL-LHC**

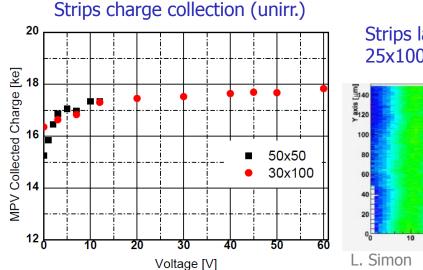


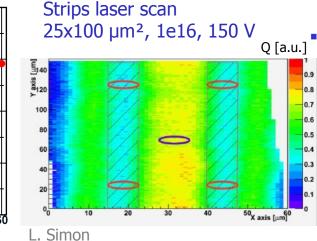
D. Vázquez Furelos et al., 2017 JINST 12 C01026 J. Lange et al., 2016 JINST 11 C11024

- Run 7781 finished in Dec 2015 (RD50 project)
- 5x 4" wafers, p-type, 230 µm double-sided, nonfully-passing-through columns (a la IBL)
- Increased aspect ratio 26:1 (column diameter 8 µm)
- **First time small pixel size 25x100+ 50x50 µm<sup>2</sup>** (folded into FEI4 and FEI3 geometries)



### **Sample Characterisations**




| Pixel<br>Geom. | C/el.<br>[fF] (*) | C/pixel<br>[fF] (*) | Noise<br>[e] |
|----------------|-------------------|---------------------|--------------|
| 25x100 2E      | 42                | 84                  | 160          |
| 50x50 1E       | 37                | 37                  | 105-140      |

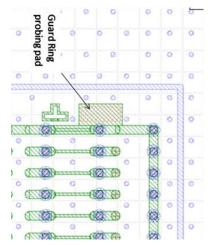
(\*) from pad diodes

D. Vázquez Furelos et al., 2017 JINST 12 C01026

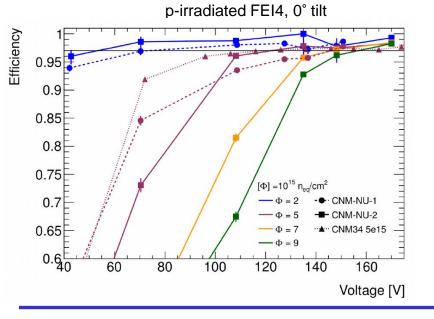




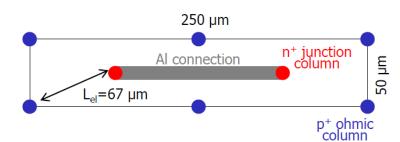
- Pixel devices bump-bonded and assembled at IFAE
- IVs
  - V<sub>BD</sub> ~ 15-40 V
  - Improved in new productions after CNM process optimization
     S. Grinstein et al., JINST 12 (2017) C01086
- C <100 fF/pixel (within RD53 limit)</li>
- Noise 100-160 e similar to standard 3D FEI4s
- Sr90 source scans on pixels
  - Similar charge as in standard FEI4s


#### Sr90 and laser scans on strips

- 17 ke charge as expected for both 50x50 μm<sup>2</sup> and 30x100 μm<sup>2</sup> (unirr.)
- Almost full charge even at 0-2 V  $\rightarrow$  low V<sub>dep</sub> due to low L<sub>el</sub>
- Uniform even after 1e16 n<sub>eq</sub>/cm<sup>2</sup>
- Measurements up to 2e16 n<sub>eq</sub>/cm<sup>2</sup> in progress


### **State of the Art: IBL/AFP Generation**

- 230 µm thick sensors by CNM and FBK (double-sided)
- FEI4s: 50x250 μm<sup>2</sup> 2E, 67 μm inter-el. distance
- Radiation hardness up to 5e15 n<sub>eq</sub>/cm<sup>2</sup> established (IBL)
- Explored limits further with irradiations up to HL-LHC fluences
  - At 9.4e15 n<sub>eq</sub>/cm<sup>2</sup>: 97.8% efficiency at 170 V!
  - Power dissipation 15 mW/cm<sup>2</sup> at 1e16 n<sub>eq</sub>/cm<sup>2</sup> and -25°C

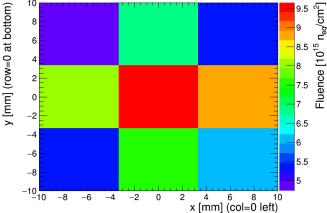

#### $\rightarrow$ Good performance at HL-LHC fluences even for existing 3D generation











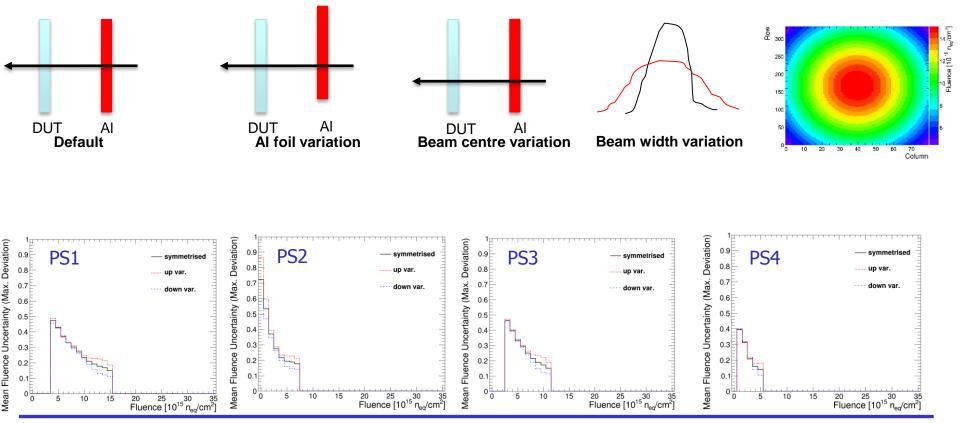


# **PS Non-Uniform Irradiation - Methodology**

- Fluence normalization obtained with 20x20 mm<sup>2</sup> Al dosimetry foil
- Profile from
  - Beam profile monitors: 12-20 mm FWHM
  - Also made fluence maps by pixelating Al foil
- Beam position
  - From Al foil profile
  - For first irradiations also in-situ from pixel measurements (eff., noise, threshold before tuning, TDAC after tuning etc.) PS2, 7781-W3-C1



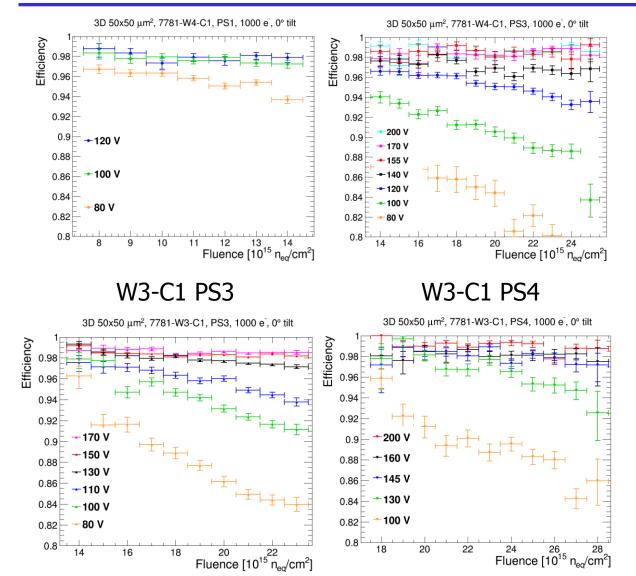
#### Profile from Al foil PS3






🗧 🎙 19.02.2018, Jörn Lange: Radiation-hard 3D Detectors

### **PS Non-Uniform Irradiation - Uncertainties**


- Introduce variations by +/- 1 mm in beam  $\sigma$ , beam centre offset, Al foil offset (both x, y)
- Vary in all combinations
- Determine maximum deviation from default value (envelope) for all variation combinations
   → take as systematic uncertainty (conservative)
- 15-20% uncertainty at highest fluence, 45% (70%) at lowest fluence for 20 (12) mm beam



### **Efficiency vs. Fluence**

### W4-C1 PS1

W4-C1 PS3



- Large range of fluence on single device
- Efficiency decreases with fluence at low voltage
- Efficiency improves with voltage
- NB: Fluence uncertainties large at low fluence range (~50%)