Qualification measurements of INFN-FBK 3D modules

G Alimonti¹, M Boscardin², **A Coccaro**³, G F Dalla Betta⁴, G Darbo³, E Fumagalli³, G Gariano⁵, A Gaudiello⁵, C Gemme³, M Meschini⁶, A Messineo⁶, R Mendicino⁴, H Oide³, S Ronchin¹, A Rovani³, E Ruscino³, D M S Sultan⁴, D Vazquez Furelos⁷, N Zorzi²

¹INFN Milano, ²FBK/TIPFA, ³INFN Genova, ⁴University of Trento and TIPFA Trento, ⁵University and INFN Genova, ⁶University and INFN Pisa, ⁷IFAE Barcelona

13th "Trento" Workshop on Advanced Silicon Radiation Detectors

- peak instantaneous luminosity 7.5 · 10³⁴ cm⁻² s⁻¹
- x40 integrated luminosity as of today
- ATLAS ITk pixel project to cope with the HL-LHC conditions, i.e. 14 TeV pp collisions at $\langle \mu \rangle \sim 200$ and $2 \cdot 10^{16}$ MeV n_{eq}/cm^2
- must be ready for installation in 2025

Pile-up

A costant challenge

- current pixel detector has been proven to work very reliably
- "pile-up is the word of the year"
 K. Jacobs in Dec 2017

Andrea Coccaro - Qualification measurements of INFN-FBK 3D modules

19 Feb, 2018 - 13th "Trento" Workshop on Advanced Silicon Radiation Detectors

3D pixel sensors

Brief history

4

- originally proposed in NIM 395 (1997) 328-343
- the ATLAS IBL is the first implementation in a hadron collider

Main concept

- 3D array of electrodes
- minor collection distances and times compared to planar technology

Baseline technology for the ITk innermost layers

power dissipation and radiation hardness

Where we stand?

- ATLAS ITk pixel TDR sent to LHCC
- sizes of 50 imes 50 or 25 imes 100 μ m² being considered
- final geometry and area tickness not fully decided
- optimal electrode configuration for 25 × 100 being further studied

FBK 3D pixel sensors prototype concept

- in partnership with FBK in Trento
- target fluence $\Phi \sim 2 \cdot 10^{16}$ MeV n_{eq}/cm^2
- > 100 to 150 μ m active sensor tickness with single-sided column processing
- column of ~ 5µm diameter with and without poly-caps options for p⁺ columns
- $\blacktriangleright\,$ n⁺ columns shorter than active tickness by $\sim 20 \mu m$ to avoid early breakdown
- p⁺ columns longer than active tickness and touching the p⁺⁺ handle wafer for biasing

First batch wafer layout - produced in 2015-16

10 wafers of 130µm-thicknes with optional variations produced in 2015-2016*.

* one of them got broken at the very last step, but still could be measured.

ATLAS R&D with FBK modules

Wafer ID 76 9/13 modules assembled

Wafer ID 78 8/13 modules assembled

Wafer	FEI4	Geometry	2016 TB	irrad	Fluence	2017 TB
76	1	25x100(1E)		KIT+IRRAD	5.2e15 + 4e15	July
	2	25x500				
	3	50x250				
	4	50x450/ 50x50				
	5	50x50				
	6	50x50	~	KIT+IRRAD	5.2e15 + 6.6e15	July, October(2)
	7	25x100(1E)	√	IRRAD	9e15 (max)	N/A
	8	50x250	√			
	10	50x50				
78	2	25x500				
	3	50x250		IRRAD	9e15 (max)	July
	4	50x450/ 50x50				
	5	50x50		IRRAD	9e15 (max)	July
	6	50x50				
	8	50x250		KIT+IRRAD	3.8e15 + 4e15	October(1)
	11	50x50				
	12	25x100(2E)				

- 17 sensors out of 2 wafers were assembled as single FE-I4 modules
- 3 modules in 2016 TB unirradiated H Oide talk at 12th Trento WS
- 6 modules, all pixel sizes, irradiated at KIT and IRRAD in 2017
- 5 irradiated modules in 2017 TB

Andrea Coccaro - Qualification measurements of INFN-FBK 3D modules

19 Feb, 2018 - 13th "Trento" Workshop on Advanced Silicon Radiation Detectors

Test beam setup

- SPS H6A beam line with mainly 120 GeV pions
- Aconite telescope with Mimosa26
- 1 IBL-like FE-I4 as a reference module and then DUT
- various non-irradiated and irradiated data-taking campaigns with FBK FE-I4 sensors

- Eudaq software for data-taking and decoding
- FrecciaFocaccia light-weight package by H Oide

Results for non-irradiated samples

HV scan

- $250 \times 50 \ \mu m^2$: efficiency is > 99% above ~ 10V
- ▶ 50 × 50 μ m²: almost flat efficiency at 98% in 2 < HV < 15 then slight increase
- 100 × 25 μ m²: similar trend of 50 × 50 μ m²

Tuning scan

> a gradual change of efficiency of 1-2% versus tuning

Results for irradiated $50 \times 250 \ \mu m^2$ samples

- improvement of efficiency versus HV
- degradation of efficiency versus fluence
- uncertainty due to fluence measurement misalignment
- threshold effect inducing a higher efficiency for 2000e compared to 2500e
- ▶ > 95% efficiency for $\Phi < 5 \cdot 10^{15}$ MeV n_{eq}/cm²

Results for irradiated $50 \times 50 \ \mu m^2$ samples

- $\blacktriangleright\,$ for 50 $\times\,$ 50 $\mu{\rm m}^2$ the calculation of the efficiency takes into account the region with no readout
- efficiency at $\sim 95\%$ for HV $> \sim 80V$ up to $1 \cdot 10^{16}$ MeV n_{eq}/cm^2
- KIT versus IRRAD comparison is actually with different thresholds
- threshold at 2k e⁻ when modules on flex and at 1k e⁻ when modules on board

Multiple-chip 3D modules

 $\mathsf{Pixel}\xspace$ tracker layout foresees single, duals and quads modules

- multiple-chip layout has the potential to greatly simplify the production and loading
- two approaches, pseudo and WLP, being investigated

Layer0/Ring0	flat	inclined	ring	Total
n-chip type	2	1	4	
Modules	192	512	128	832
Fes	384	512	512	1408
Surface [cm2]	1536	2048	2048	5632
Layer1/Ring1	flat	inclined	ring	Total
n-chip type	4	4	4	
Modules	240	520	484	1244
Fes	960	2080	1936	4976
Surface [cm2]	3840	8320	7744	19904

Single chip approach

Pseudo multi chip

WLP multi chip

Multiple-chip 3D modules

The first pseudo quad-module has been built using single 3D tiles

- similar assembly procedure as IBL module production
- CNM sensors from AFP ATLAS detector Thanks to S Grinstein (Barcelona)
- interspace between most external pixels $\mathcal{O}(100-500) \ \mu m$

Wafer Level Packaging

An industrial solution is being developed for wafer level packaging (WLP)

- rebuild new wafers using only good sensors diced from the standard production
- minimise the chip interspace as much as possible, i.e. $\mathcal{O}(50-100)~\mu\text{m}$

Ongoing R&D program in MicroFabSolutions

- > 300 μ m thick wafers with 20 \times 20 mm² chips with dummy chains
- now testing chip placing accuracy and deformation of six rebuilt wafers using different resins

Conclusions

Characterisation of FBK phase-II 3D sensors is in full swing

2015-16 wafers

- extensive non-irradiated and irradiated tests with the FE-I4 readout
- different fluences with irradiation at KIT and/or IRRAD tested
- results inserted in the pixel ITk TDR under LHCC review
- results with irradiated modules based on TBs on July and September 2017

Multiple-chip 3D module

- first pseudo quad-module with CNM sensors
- ongoing R&D program for WLP