Development of Strip-type Low-Gain-Avalanche Detectors

Y. Unno (KEK)
Motivation/Application

• A detector for tracking in HL-LHC
• Reduction of fake tracks with precision space-time (4D) info.
 – For the barrel region, strip detector is a cost-effective solution.

ATLAS: High Granularity Timing Detector (HGTD)

Barrel: overlap of tracks
Space-time tracking layer(s)

Forward: highly collimated jets

interaction region: \(2\sigma_z = 15 \text{ cm} = 500 \text{ ps} \)
in HL-LHC, max. 200 interactions at a collision

\(\Delta t = 10 \text{ ps} \Leftrightarrow \Delta z = 3 \text{ mm} \)
Motivation/Application II

• Application to medical instrumentation
 – Positron Emission Tomography (PET)
 – A novel detection element, replacing conventional scintillator crystals
 – Similar application as in the “barrel” region, with γ detection

Coincidence in space-time

• Precision space info.
 – high resolution in “line of sight”
 – $\Delta x \sim 20 \mu m$

• Precision time info.
 – reduction of fake lines
 – $\Delta t \sim 10$ ps = $\Delta r \sim 3$ mm
 – which may reduce a requirement for photon energy measurement

Figure [Wikipedia]
LGAD: Strip Sample

- **Geometry**
 - Strip pitch: 80 µm
 - Readout metal: DC-coupled (although AC should be possible)
 - Opening (30 µm wide) in the metal for laser injection

- **Density of p+ gain layer**
 - 4 densities: A, B, C, D as
 - 2 Active thicknesses: 50, 80 µm

Traditional

Signal: mirror current of drifting carriers (e, h) to n++ in the bulk

LGAD

Signal: mirror current of drifting carriers, multiplied at the n++-p+ junction, drifting away in the high electric field in p+ layer
Gain Measurement with Laser

- **Irradiation with neutrons**
 - TRIGA reactor of JSI, with V. Cindro et al.
 - Supported by the H2020 project AIDA-2020, GA no. 654168
 - Fluences: 0.3, 1.0, 3×10^{15} 1-MeV n$_{eq}$/cm2

- **Infrared laser (Nd:YAG)**
 - $\lambda = 1064$ nm
 - Focused at surface, collimated to 2×2 μm2
 - uniform e-h generation in depth, mimicking the traverse of charged particle
Responses to Laser

S. Wada et al.,
HSTD11 (2017)

- At the center of strips (bottom figs.) – observed gain both before and after irradiation, as expected.
- At the interstrip (top figs.) – no gain before irrad. as expected; non-zero gain after irradiation, surprising, but, in retrospect, confirming “charge multiplication”

Before irradiation

After irradiation of 1×10^{15} n_{eq}/cm^2
How to Make a Usable Device?

• Present sample:
 – No gain in the interstrip region, although a small gain has appeared after irradiation.
 – As is, it is not usable, with a design as same as the conventional strip sensor (narrow strip with wide interstrip region)

• Improvement(?):
 – “AC LGAD” might be a way to go for (see other talk)
 – Here, we pursue to introduce gain in the interstrip region before irradiation.
 – In the next slides we show how, with TCAD simulations...
TCAD Simulations – Strips in General

- A few factors that are affecting electric field
 - Guard band (GB): usually n^+ implantation, noted as GB(n^+)
 - Extended Al (XA)
 - Staggering of n^{++} and p^+ layers
Electric Field and Flow lines

- **Case 2.0 — as is, No GB(n⁺)**

Carries drifting along these flow lines will not go avalanche, except ...

- A corner of n⁺⁺ electrode with E>300 kV/cm may have become effective to go avalanche after irradiation.

Avalanche breakdown field – 300 kV/cm
Electric Field and Flow lines

- Case 1.5 – as is, with GB(n+)

- GB(n+) suppresses a region with $E > 300$ kV/cm at a corner of n+ electrode, making the device safer for micro-discharge breakdown.

Avalanche breakdown field – 300 kV/cm
A Proposed Solution (?)

- **Case 3.1** – GB(p^+), No XA, width $p^+ \sim n^{++}$$

Geometry

Carries drifting towards the corner along flow lines (not drawn) will go avalanche

- GB(p^+), no extended Al, same width of n^{++} and p^+ enhance electric field along the edge of n^+ electrode to have $E > 300$ kV/cm, making the n^{++} electrode sensitive to avalanche in all faces.

Avalanche breakdown field – 300 kV/cm
Summary

• We have evaluated strip-type LGAD (DC-coupled), by implementing high density p⁺ gain layer in the conventional strip structure.
• The strip region where the gain layer is showed gain of ≥10, before and after irradiation to neutrons, as expected.
• The interstrip region did not show gain, before irradiation as expected, showed small gain after irradiation, a confirmation of “charge multiplication”.
• We have pursued and propose a design to introduce gain in the interstrip region before irradiation, verified with TCAD simulations.
• A next step is to fabricate a device.
Backup
• Case 2.3 – GB(p+(5e14)), No extended Al

2018/2/20 Y. Unno
• Case 3.0 – GB(p+(5e14))-XA, n+ side-smearing(1 nm)

2018/2/20 Y. Unno
• Case2.05 – No GB, No extended Al (XA)