Study of the radiation resistance of different LGAD gain layer designs

Roberta Arcidiacono (Università del Piemonte Orientale and INFN Torino)

N. Cartiglia, M. Ferrero, M. Mandurrino, V. Sola, A. Staiano
(INFN Torino)

M. Boscardin, G.F. Dalla Betta, F. Ficorella, L. Pancheri, G. Paternoster
(1. DII Università di Trento, 2. TIFPA INFN Trento, 3. FBK Trento)

Z. Galloway, S. Mazza, H. Sadrozinski, A. Seiden, Y. Zhao
(SCIPP, Univ. of California Santa Cruz)
FBK-UFSD2 production

<table>
<thead>
<tr>
<th>Wafer #</th>
<th>Dopant</th>
<th>Gain dose</th>
<th>Carbon</th>
<th>Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boron</td>
<td>0.98</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>2</td>
<td>Boron</td>
<td>1.00</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>Boron</td>
<td>1.00</td>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td>4</td>
<td>Boron</td>
<td>1.00</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>5</td>
<td>Boron</td>
<td>1.00</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>6</td>
<td>Boron</td>
<td>1.02</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>7</td>
<td>Boron</td>
<td>1.02</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>8</td>
<td>Boron</td>
<td>1.02</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>9</td>
<td>Boron</td>
<td>1.02</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>10</td>
<td>Boron</td>
<td>1.04</td>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td>11</td>
<td>Gallium</td>
<td>1.00</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>12</td>
<td>Gallium</td>
<td>1.00</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>13</td>
<td>Gallium</td>
<td>1.04</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>14</td>
<td>Gallium</td>
<td>1.04</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>15</td>
<td>Gallium</td>
<td>1.04</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>16</td>
<td>Gallium</td>
<td>1.04</td>
<td>HIGH</td>
<td>Low</td>
</tr>
<tr>
<td>17</td>
<td>Gallium</td>
<td>1.08</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>18</td>
<td>Gallium</td>
<td>1.08</td>
<td></td>
<td>Low</td>
</tr>
</tbody>
</table>

- 50 micron active area, Si-on-Si wafer
- 5 different gain layer strategies:
 - **Boron** (Low & High diffusion)
 - **Carbonated Boron** (B High diffusion)
 - **Gallium** (Low diffusion)
 - **Carbonated Gallium** (Low diffusion)

Main issue: LGAD gain strongly affected by the irradiation. Gain disappears after $\Phi = 2-3 \times 10^{15}$

Both gain layer and bulk are subject to:
- Initial acceptor removal
- Acceptor-like deep traps creation

see G. Paternoster talk in this workshop
FBK-UFSD2 production

<table>
<thead>
<tr>
<th>Wafer #</th>
<th>Dopant</th>
<th>Gain dose</th>
<th>Carbon</th>
<th>Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boron</td>
<td>0.98</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>2</td>
<td>Boron</td>
<td>1.00</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>Boron</td>
<td>1.00</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Boron</td>
<td>1.00</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>Boron</td>
<td>1.00</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>6</td>
<td>Boron</td>
<td>1.02</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>7</td>
<td>Boron</td>
<td>1.02</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>8</td>
<td>Boron</td>
<td>1.02</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>9</td>
<td>Boron</td>
<td>1.02</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>10</td>
<td>Boron</td>
<td>1.04</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>11</td>
<td>Gallium</td>
<td>1.00</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>12</td>
<td>Gallium</td>
<td>1.00</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>13</td>
<td>Gallium</td>
<td>1.04</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>14</td>
<td>Gallium</td>
<td>1.04</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>15</td>
<td>Gallium</td>
<td>1.04</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>16</td>
<td>Gallium</td>
<td>1.04</td>
<td>HIGH</td>
<td>Low</td>
</tr>
<tr>
<td>17</td>
<td>Gallium</td>
<td>1.08</td>
<td>HIGH</td>
<td>Low</td>
</tr>
<tr>
<td>18</td>
<td>Gallium</td>
<td>1.08</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

- 50 micron active area, Si-on-Si wafer
- 5 different gain layer strategies:
 - **Boron** (Low & High diffusion)
 - **Carbonated Boron** (B High diffusion)
 - **Gallium** (Low diffusion)
 - **Carbonated Gallium** (Low diffusion)

- **Low Diffusion**: “thinner” gain layer could be more radiation resistant
- **Gallium**: Ga could have a lower probability than B to become interstitial (lower interstitial mobility)
- **“Carbonation”**: Carbon could be trapped by defects faster than B or Ga

see G. Paternoster talk in this workshop
Irradiation campaign

Sensors from B, B-LD, Ga, Ga + C , B+ C wafers have been sent for irradiation

Neutron irradiation in Ljubljana (AIDA2020)
Fluence steps: 0.2 0.4 0.8 1.5 3.0 6.0 $\cdot 10^{15}$ n$_{eq}$/cm2

24 GeV/c Proton irradiation at CERN
(IRRAD – thanks Joern!)
Fluence steps: 0.1 0.6 1.0 3.0 6.0 9.0 $\cdot 10^{15}$ p/cm2

Irradiated PIN/LGAD tested:
- in the laboratory in Torino and in Santa Cruz (plus some other ATLAS institutes)
- at FNAL beam test, with proton beam @120 GeV (in Jan18 - analysis ongoing)
IV, CV curves, gain measurements with laser, gain/noise/time resolution with β source.
Irradiation campaign

Sensors from B, B-LD, Ga, Ga + C, B+C wafers have been sent for irradiation

Evolution of active acceptor density with fluence

\[N_A(\Phi) = g_{\text{eff}} \Phi + N_A(0) e^{-c(N_A(0)) \Phi/\Phi_0} \]

\(\Phi = \text{fluence} \quad (\Phi_0 \text{ is a constant }) \)

\(N_A(\Phi), N_A(0) = \text{active acceptor density at fluence } \Phi, \text{ or initial } \)

\(g_{\text{eff}} = \text{empirical constant} \quad (~0.02 \text{ cm}^{-1}) \)

The \(c \) coefficients to be determined depends upon the irradiation type, the acceptor type and the initial acceptor density
How do we measure the Acceptor density?

- The foot in the $1/C^2$ - V curves indicates the depletion of the gain layer.

- In UFSD2:
 - Carbon reduces the active doping concentration of gain layer for both B and Ga acceptor types.

$V_{GL} = \text{depletion voltage for gain layer}$

$V_{FD} = \text{full depletion voltage}$

$slope \propto \frac{1}{N_{bulk}}$

V_{GL} is proportional to the amount of active doping in the gain layer.
Gain layer inactivation with neutrons

The reduction of gain layer doping is mitigated by factor $\gtrsim 2$ by Carbon
Measurement of coefficient “c”

\[
\frac{N_A(\Phi)}{N_A(0)} = \frac{V_{GL}(\Phi)}{V_{GL}(0)} = e^{-c(NA(0))\Phi/\Phi_0}
\]

- Each point is the average of two CV curves
- Measurements done at room temperature, \(f = 1 \text{ kHz} \)
Coefficient “c” for FBK, CNM, HPK

\[\frac{N_A(\Phi)}{N_A(0)} = e^{-c(NA(0))\Phi/\Phi_0} \]

Neutrons

\[y = 9.9E-01e^{-2.1E-16x} \]
\[y = 9.7E-01e^{-2.7E-16x} \]
\[y = 9.8E-01e^{-4.1E-16x} \]
\[y = 1.0E+00e^{-5.5E-16x} \]
\[y = 9.5E-01e^{-5.5E-16x} \]
\[y = 1.0E+00e^{-6.9E-16x} \]
\[y = 9.6E-01e^{-7.7E-16x} \]
\[y = 1.0E+00e^{-8.5E-16x} \]
\[y = 1.0E+00e^{-1.1E-15x} \]

CNM, HPK data points taken from
- 12th Trento Workshop on Advanced Silicon Radiation Detectors [online] (2017).
On the “c” coefficients (at $N_A \sim 10^{16}$)

Acceptor Removal "c" values

- FBK Ga
- CNM Ga
- HKP B 50A
- HKP B 50B
- HKP B 50C
- HKP B 50D
- CNM B
- FBK B
- FBK B LD
- FBK Ga+C
- FBK B+C

Value of the acceptor removal coefficient as a function of implant width

- Smaller c, better resistance
- ➔ Add Carbon

Smaller c, better resistance

- ➔ Make the gain layer thin
Gain measurement on neutron irradiated LGADs

\[\text{GAIN} = \frac{\text{Signal area LGAD}}{\text{Signal area PiN}} \text{ irradiated at the same fluence} \rightarrow \text{only from gain layer} \]

W14 (Ga)

W15 (Ga + C)

W8 (B)

W6 (B + C)

W1 (B - LD) has a similar behavior to B+C
Proton irradiation: coefficient “c”

\[
\frac{N_A(\Phi)}{N_A(0)} = e^{-c(NA(0))\Phi/\Phi_0}
\]

<table>
<thead>
<tr>
<th></th>
<th>Neutrons</th>
<th>Protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>W6</td>
<td>2.1E-16</td>
<td>4.3E-16</td>
</tr>
<tr>
<td>W15</td>
<td>2.7E-16</td>
<td>7.4E-16</td>
</tr>
<tr>
<td>B</td>
<td>W1</td>
<td>W3</td>
</tr>
<tr>
<td></td>
<td>5.5E-16</td>
<td>1.0E-15</td>
</tr>
<tr>
<td>W14</td>
<td>8.5E-16</td>
<td>1.5E-15</td>
</tr>
</tbody>
</table>
Preliminary results on time resolution

Time resolution measured with β source, at low temperature, for W6 (B+ C) and W8 (B), in Santa Cruz

(see H. Sadrozinski talk in this workshop)
Preliminary results on time resolution

CMS goal for the silicon timing layer (ETL): time resolution between 30 – 35 ps unchanged till the end of lifetime (4000 fb⁻¹ - 1e15 neq/cm²)

![Graph showing time resolution vs bias for UFSD2 W6 (B+C)]
Summary

- The presence of Carbon in the gain layer:
 - decreases by more than a factor of two the initial acceptor removal rate
 - does not degrade the time resolution
 - enable to obtain a better time resolution at equal voltage, or a similar time resolution with lower voltage
- Narrower gain layers (low diffusion) are more radiation resistant
- The concentration of Carbon used in UFSD2 was an “educated guess”. It will be further explored in UFSD3
- The initial acceptor removal rate for proton irradiation is ~ double wrt to that of neutrons
- UFSD2 B+C meets the ETL CMS requirement of a time resolution of 30-35 ps up to 4000 fb^{-1}
Acknowledgements

Thank you for your attention!

Special thanks to Joern Lange and Gregor Kramberger!

This work was supported by the United States Department of Energy, grant DE-FG02-04ER41286, by the European Union’s Horizon 2020 Research and Innovation funding program, under Grant Agreement no. 654168 (AIDA-2020) and Grant Agreement no. 669529 (ERC UFSD669529), by the Italian Ministero degli Affari Esteri and INFN Gruppo V, and by the CERN RD50 Collaboration.
Gain Measurement in LAB – Unirradiated LGADs

- Carbon reduces the gain
- Low Diffusion increase the gain

Laser set-up. Ratio of QV curves on LGAD an associated PiN (reference)
Initial Acceptor Removal

\[N_A(\Phi) = g_{eff} \Phi + NA(0) e^{-c(N_A(0))} \frac{\Phi}{\Phi_0} \]