Determination of E-field in Two-Photon TCT: application to the E-field mapping of irradiated LGADs

Marcos Fernández(1), Richard Jaramillo, Iván Vila

Raúl Montero

Michael Moll

Rogelio Palomo

(1) Also visiting scientist at CERN
Outline

Motivation

Transient Current Techniques: TPA-TCT

Calculation of E-field, the scaling problem

Examples of E-field calculation

Edge-TCT on diodes
TPA-TCT on diodes
TPA-TCT on LGAD

Work carried out within RD50 collaboration
Motivation

Two (not excluding) hypothesis for gain reduction in LGADs:

1) **Acceptor removal** in the gain layer or

2) **Double Junction mechanism**

Two-Photon-Absorption TCT measurement of CNM-LGAD irradiated to 10^{14} n_{eq}/cm2 shows:

- **0-95 V**: depletion starting from the backside
- **96-100 V**: double junction shape
- **>100V**: junction at the front and develops to the backside

How sound is this E-field calculation?
Transient Current Techniques
Technique that allows to study the **current induced** by excess charge carriers produced, typically, by a **laser**.

SPA-TCT Red
Employing short absorption length laser (red for Si), all carriers deposited in few μm from surface. Allows to study drift of one kind of carriers. No **spatial resolution along beam direction**.

1 photon=1 e-h pair

SPA: Single Photon Absorption
TCT: Transient Current Technique

SPA-TCT Infrared
Using long absorption length laser (infrared for Si). Homogeneous distribution along “Rayleigh length”. Similar to MIPs, though different dE/dx. Incidence can be from **top**, **bottom** or **edge**. Edge: lateral **spatial resolution**.

1 photon=1 e-h pair

Two Photon Absorption (TPA-TCT)
Point-like energy deposition → 3D spatial resolution

Novel technique developed by **IFCA, CERN, US, UPV**

2 photons=1 e-h pair
Two Photon Absorption-TCT

SPA
Single Photon Absorption
Continuous energy deposition

TPA
Two Photon Absorption

Fluorescent solution

Spot size

Two Photons \((E > E_{\text{gap}}/2)\) must be coincident in time (pulsed mode-locked lasers) and in space (microfocusing) \(\times 100\) objective

Laser facility at Bilbao (Spain) UPV
Access granted thanks to RD50 collaboration

Absorption in Si

No Single Photon Abs.: \(\alpha \approx 0\) for \(\lambda > 1150\) nm (Silicon)

\[
\frac{dN(r,z)}{dt} = \alpha \frac{I(r,z)}{\hbar \omega} + \frac{\beta_2 I^2(r,z)}{2 \hbar \omega}
\]

Single Photon Absorption
No spatial resolution along the beam propagation direction

Two Photon Absorption
Point-like resolution
Boosted by getting away from SPA region and increasing irradiance so \(I_2 \gg I\).

Handle: use fs laser

13st Trento Workshop – Marcos Fernández
The problem: calculate E-field in absolute units

Detector response to a pulse of light

\[I_{\text{total}}(t) = N_{e,h} q_e A \cdot e^{-t} \cdot \vec{v} \cdot \vec{E}_W \]

Charge scale can be fixed comparing with a MIP and using 1 MIP=76 e-h/µm.
This does not hold for irradiated detectors
Scaling for drift velocity is not straightforward
Systematics for the calculation of E-field scale

SPA edge-TCT:

Reflections at the air-surface interface (inward and outward) → number of photons is not constant.

Attenuation depth along direction of propagation (mm) modify number of photons

Mitigated using strip detectors + weighting field

Illumination below GR and unactive regions for detection

TPA-TCT:

Only normal reflections.

Attenuation along beam direction is **minimal** because of small detector thickness.

A diode is the best geometry because of **constant weighting** field.
Scaling of drift velocity (I)

As a **first approach**, we will use the prompt method (Kramberger, IEE TNS vol57 4, 2010), based on Ramo's current. For a diode ($E_{w} = 1/d$) and constant mobility, the total induced current is:

$$I_{\text{total}}(t) = \frac{N_{e,h} q_{e} A}{d} \cdot \frac{e^{-t}}{\tau} \cdot (\mu_{e} E(z) + \mu_{h} E(z))$$

First simplification: mobility is constant. $I_{\text{total}}(t) = k e^{-\frac{t}{\tau}} (\mu_{e} + \mu_{h}) E(z)$

For a fixed bias $E<1 \text{ V/\mu m}$ in a diode→ $\mu_{e} (\mu_{\eta})$ typically varies ~20%(10%).

Better applicability for overdepleted detectors with "flat" velocity profiles ("small" Neff, high resistivity)

(faster variation for e than h)

13th Trento Workshop – Marcos Fernández
Scaling of drift velocity (II)

For $t \sim 0$:

$$I_{\text{total}}(t \sim 0) = k \left(\mu_e + \mu_h \right) E(z) = k' E(z) \quad \Rightarrow \quad E(z) = \frac{I_{\text{total}}(t \sim 0)}{k'}$$

Prompt method:
Drift velocity profile can be calculated except for a proportional factor from the rising edge of the induced current.

To calculate k' we use the constraint that the electric field integrated over the thickness of the detector gives the bias. **Experimentally** this can be realized as a Z-scan in edge-TCT or a normal scan in TPA.

$$V_{\text{bias}} = \int_0^{w(V)} E(z) \, dz = \int_0^{w(V)} \frac{I_{\text{total}}(t \sim 0)}{k'} \, dz \quad \Rightarrow \quad k' = \frac{\int_0^{w(V)} I_{\text{total}}(t \sim 0) \, dz}{V_{\text{bias}}}$$

Different k' for each bias.

By construction:

$$V_{\text{bias}} = \int_0^{w(V)} E(z) \, dz$$
Meaning of $t \sim 0$

The picture obtained for different $(t \sim 0)$ is the same except for a normalization constant.
The resistivity calculated from Vdep~5 V gives a resistivity of 14.5 kΩ.cm.

Nominal is >10 kΩ.cm.
Doping resistivity can be calculated from the slope of the E-field, once the scale is known.

\[E(x) = \frac{2V_{di}}{d} \left(1 - \frac{x}{d}\right) + \frac{V_b - V_{di}}{d} \Rightarrow \text{slope} = 2V_{\text{dep}} / d^2 \rightarrow N_{\text{eff}} = \frac{\epsilon}{e} \cdot \text{slope} \]

The result for this detector is 14 kΩ.cm

However this method is not robust. A small change in the slope gets amplified by the \(\epsilon/e \) factor (error is roughly x10 bigger than from Vdep method).
E-field calculation in TPA top-TCT

From depletion voltage: \(V_{\text{dep}} = 35.7 \) V
\(\text{Neff} = 8 \) k\(\Omega \).cm

From slope: 7.8 k\(\Omega \).cm

PiN 7859_W1_A6_3 (different detector)

Two independent estimations of the nominal resistivity (12 k\(\Omega \).cm):
- From depleted width (CV-like): 8 k\(\Omega \).cm
- From E-field slope: 7.8 k\(\Omega \).cm
E-field calculation in LGAD p-irradiated 1×10^{14} n$_{eq}$/cm2

Gain at the front does not seem to impact drift velocity/charge profiles.

Drift velocity scaling calculated discarding Gain.
Conclusions

Thanks to the point-like excitation volume inherent to TPA the problem of calculation of Electric field inside a detector using Ramo theorem is simplified.

As a first attempt, we used the current prompt method and the bias constraint to extract the proportionality factor. Electric field and doping concentration calculated for diodes and an irradiated LGAD.

Next: use simulation package TRACS to account for mobility changes with E-field and fit for effective space charge.

A TPA-TCT system is being built at CERN-SSD and will be commissioned at the end of 2018, thanks to CERN-KT funding.
Backup
Mult. layer dose $1.8 \cdot 10^{13} \text{ cm}^{-2}$, $\Phi_{eq} = 10^{14} \text{ cm}^{-2}$, $T = -20^\circ\text{C}$
Sweeping vs averaging

Short sweeps average laser power oscillations
Two Photon Absorption-TCT

SPA
Single Photon Absorption
Continuous energy deposition

TPA
Two Photon Absorption
Energy confinement

Two Photons must be coincident in time (pulsed mode-locked lasers) and in space (microfocusing)

σ = 1 μm

σ = 10 μm

x100 objective

Setup
3D stages
N₂ cooling

Two Photon Absorption
E_{gap}/2
E_{gap}/2
0.1 fs

Non-irradiated

Fluorescent solution

Objective
Evidences for TPA process

1) Collected charge varies quadratically with power
2) Z-scan is not Z-invariant.

Then characterize the excitation volume:

Ellipsoid is completely described by waist \(w_0 \), \(\lambda \) and \(\beta \).

\[
\begin{align*}
W_0 &= 0.95 \pm 0.05 \, \mu m \\
\text{Ellipsoid length} &= 13 \, \mu m
\end{align*}
\]

\[
w(z) = w_0 \sqrt{\frac{\lambda z}{\pi w_0^2 n}}
\]

\[
I(z) = \frac{2P}{\pi w^2(z)} e^{-\frac{-2r^2}{w^2(z)}}
\]

\[
\frac{dN(r, z)}{dt} = \frac{\beta_2 I^2(r, z)}{2\hbar \omega}
\]

\[
t \sim t_p \rightarrow N(z) = \int_{-\infty}^{\infty} 2\pi r \cdot t_p \cdot N(r, z) \, dr
\]

An **edge-TPA** scan is optimum, because spatial resolution is \(\sim 1 \, \mu m \)
Try to scan **pads from the edge** \(\rightarrow \) Get active area very close to the border

New RD50 project to perform edge-TPA on irradiated diodes