13th "Trento" Workshop - MPP, 19-21/2/2018

TCAD Simulations of Silicon Sensors at HL-LHC Conditions

M. Bomben – LPNHE & UPD, Paris

Outline

Radiation damage models

Available software

1D vs 2D vs 3D vs 4D simulations

Conclusions

RADIATION DAMAGE MODELS

Radiation damage models: history

- Modelling all known defects in silicon in TCAD is (still) computationally prohibitive
 - Plus: how to model defects clusters?
- Hence only a certain number of "effective states" are modelled
- a. 1 acceptor-like state (q=-/0)
 - e.g. D. Passeri et al., IEEE TNS 45 (1998) 602-608
- b. 2 states, 1 acceptor- and 1 donor-like (q=+/0)
 - e.g. V. Eremin et al., NIM A476 (2002) 556-564, aka EVL
- c. 3 states, adding 1 acceptor wrt b., very close to mid-gap, to better control type inversion and leakage current increase rate
 - e.g. M. Petasecca et al., IEEE TNS 53 (2006) 2971-2976
- d. 4 states, adding 1 acceptor more (rather unique example)
 - e.g. F. Moscatelli et al., NIM B186 (2002) 171

Radiation damage models for HL-LHC

- "Perugia" model: IEEE TNS 64 (2017) 2259-2267
 - Two acceptors and one donor
 - Interface damage modelled too (2 acc. and 1 don. again)
 - Valid up to $2.2x10^{16}$ n_{eq}/cm^2
- "3D" model: Pennicard et al., NIM A592 (2008) 16-25
 - Two acceptors and one donor as in Perugia model but larger cross sections wrt Petasecca et al. 2006
 - Used recently in M. Baselga et al. "Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade" NIM A847 (2017) 67-76
 - Valid up to $1x10^{16}$ n_{eq}/cm^2
- "LHCb model": NIM A874 (2017) 94-102
 - Two acceptors and one donor
 - One acceptor and one donor as in EVL plus one acceptor close to the valence band
 - Valid up to $8x10^{15}$ n_{eg}/cm²

Parameters of the proposed radiation damage model. The energy levels are given with respect to the valence band (E_V) or the conduction band (E_C) . The model is intended to be used in conjunction with the Van Overstraeten–De Man avalanche model.

Defect number	Туре	Energy level [eV]	$\sigma_e \ [\mathrm{cm}^{-2}]$	$\sigma_h \ [{ m cm}^{-2}]$	η [cm ⁻¹]
1	Donor	$E_V + 0.48$	2×10^{-14}	1×10^{-14}	4
2	Acceptor	$E_C - 0.525$	5×10^{-15}	1×10^{-14}	0.75
3	Acceptor	$E_V + 0.90$	1×10^{-16}	1×10^{-16}	36

LHCb

PERUGIA

TABLE II

Radiation Damage Model for P-Type Substrates (up to 7 \times $10^{15}~\text{n/cm}^2)$

TABLE III

Radiation Damage Model for P-Type Substrates (in the range 7×10^{15} – 1.5×10^{16} N/cm²)

TABLE IV

Radiation Damage Model for P-Type Substrates (in the range $1.6\times10^{16} - 2.2\times10^{16} \text{n/cm}^2)$

3D

Type	Energy	$\sigma_{\rm e} ({\rm cm}^{-2})$	$\sigma_{\rm h} ({\rm cm}^{-2})$	η (cm ⁻¹)	Type	Energy	$\sigma_{\rm e} ({\rm cm}^{-2})$	$\sigma_{\rm h} ({\rm cm}^{-2})$	η (cm ⁻¹)	Type	Energy	$\sigma_{\rm e}({\rm cm}^{-2})$	$\sigma_{\rm h} ({\rm cm}^{-2})$	η (cm ⁻¹)
	(eV)					(eV)					(eV)			
Acceptor	Ec-0.42	1×10^{-15}	1×10 ⁻¹⁴	1.613	Acceptor	Ec-0.42	1×10 ⁻¹⁵	1×10 ⁻¹⁴	1.613	Acceptor	Ec-0.42	1×10 ⁻¹⁵	1×10 ⁻¹⁴	1.613
Acceptor	Ec-0.46	7×10^{-15}	7×10 ⁻¹⁴	0.9	Acceptor	Ec-0.46	3×10 ⁻¹⁵	3×10 ⁻¹⁴	0.9	Acceptor	Ec-0.46	1.5×10 ⁻¹⁵	1.5×10 ⁻¹⁴	0.9
Donor	Ev+0.36	3.23×10 ⁻¹³	3.23×10 ⁻¹⁴	0.9	Donor	Ev+0.36	3.23×10 ⁻¹³	3.23×10 ⁻¹⁴	0.9	Donor	Ev+0.36	3.23×10 ⁻¹³	3.23×10 ⁻¹⁴	0.9
								•						

Table 1

p-Type float zone silicon trap model, based on Ref. [16]

Type	Energy (eV)	Defect	$\sigma_{\rm e}~({\rm cm}^2)$	$\sigma_{\rm h}~({\rm cm}^2)$	$\eta \text{ (cm}^{-1})$
Acceptor	$E_C - 0.42$ $E_C - 0.46$ $E_V + 0.36$	VVV		$*9.5 \times 10^{-14}$ 5.0×10^{-14} $*3.23 \times 10^{-14}$	0.9

Comments

- Perugia 2017 and 3D are rather in agreement
- Difference in the capture cross sections
 - Larger for Pennicard for the acceptor states
- LHCb uses EVL levels (1 acc. + 1 don.) and adds a another acceptor level close to the valence band
 - Added to tune the charge collection efficiency without influencing the leakage current level

Other models

- "New Delhi" model: R. Dalal et al., PoS (Vertex2014) 30 (2014), and T.Peltola, PoS (Vertex 2015) 31 (2015) – based on R. Eber PhD th.
 - Based on V. Eremin et al. work
 - Interface damage modelled too
 - Valid up to 1-1.4x10 15 n_{eq}/cm 2

Table 2: List of parameters for Model 2.

Trap Type	Energy Level	Introduction Rate	$\sigma_{ m e}$	$\sigma_{ m h}$
	(eV)	(cm^{-1})	(cm ²)	(cm ²)
Acceptor	E _C - 0.51 eV	4	2.10^{-14}	$3.8 \cdot 10^{-14}$
Donor	$E_V + 0.48 \text{ eV}$	3	$2. 10^{-15}$	$2. 10^{-15}$

Defect type	Level [eV]	$\sigma_{\mathbf{e},\mathbf{h}}$ [cm ²]	Concentration [cm ⁻³]
Deep acceptor	$E_{\rm c} - 0.525$	1×10^{-14}	$1.189 \times \Phi + 6.454 \times 10^{13}$
Deep donor	$E_{\rm V} + 0.48$	1×10^{-14}	$5.598 \times \Phi - 3.959 \times 10^{14}$

Table 2: The parameters of the proton model for Synopsys Sentaurus [27, 28]. $E_{C,V}$ are the conduction band and valence band energies, $\sigma_{e,h}$ are the electron and hole trapping cross sections and Φ is the fluence.

Defect type	Level [eV]	$\sigma_{\mathbf{e},\mathbf{h}}$ [cm ²]	Concentration [cm ⁻³]
Deep acceptor	$E_{\rm c} - 0.525$	1.2×10^{-14}	1.55 × Φ
Deep donor	$E_{\rm V} + 0.48$	1.2×10^{-14}	1.395 × Φ

Table 3: The parameters of the neutron model for Synopsys Sentaurus [27, 28]. Symbols are as in table 2.

Predictions from TCAD models - LHCb

- In the conclusions authors mention that the model has been tested for temperatures between −38°C and −31°C on a range of sensors with different irradiation types and profiles.
- Predictions on IVs too

Predictions from TCAD models - Perugia

Fig. 17. Comparison between simulated and experimental charge collection [36] in n-on-p strip detectors at 248 K and 500 V (red symbols) and 900 V (black symbols) bias.

Fig. 15. Measured (dashed lines) and simulated (solid lines) interstrip resistance as a function of the $V_{\rm BIAS}$ at different X-ray doses. Simulations are obtained considering two acceptor interface traps with Gaussian distributions with peak energy at $E_T=E_C-0.4$ eV and at $E_T=E_C-0.6$ eV and one donor interface trap with Gaussian distribution with peak energy at $E_V+0.7$ eV. $\sigma=0.07$ eV for all traps. In this case, $N_{\rm IT}=0.85\times N_{\rm OX}$.

- In the conclusions authors mention that aspects not fully addressed are temperature variation and annealing conditions
 - Nota bene: this is true also for the other models

Predictions from TCAD models – 3D

Fig. 1. Comparison between simulated and experimental depletion voltages in n-in-p pad detectors. Experimental results are taken from Ref. [20].

Fig. 5. Comparison between simulated and experimental charge collection in a "3-column" ATLAS pixel detector. Experimental results are taken from Ref. [24]. The labels indicate the bias used in both the experiments and the simulations.

- Nota bene: depletion voltage can be measured (and simulated!)
- This is generally true for 3-levelsmodels à la Perugia

Electric field - 2 states models

The "third" level is very close to the valence band that it doesn't affect too much the electric field distribution

Fig. 4. The z-component of the simulated electric field resulting from the model best fit is shown as a function of z for a sensor irradiated to a fluence of $\Phi = 0.5 \times 10^{14} \, n_{\rm eq}/{\rm cm}^2$ (a) and $\Phi = 2 \times 10^{14} \, n_{\rm eq}/{\rm cm}^2$ (b). (c) Space charge density as a function of the z coordinate for different fluences and bias voltages.

Cfr. Chiochia et al.
NIM A568 (2006)
51–55
The model is based
on EVL levels only

Electric field - 3 states models

- Why they differ with respect to EVL/Chiochia/LHCb?
- Just a combination of thickness/fluence/particle energy?

Comments

- In 2-states models energies are closer to the intrinsic level than in 3states models
- Yet they both reproduce correctly the level of leakage current
- And the CCE
- Why then do they differ in the predicted electric field?

Protons <-> Neutrons ~10¹⁶

Field profiles compared

 Protons with more "double junction", flatter field, less peaked at junction

Protons <-> Neutror

~10¹⁶

Field pro

 Protons field, les One single radiation damage model cannot describe both situations!

"double junction", flatter seaked at junction

TREDI, Paris, Feb 22, 2016

Marko Mikuž: Ε, μ and τ in irrad. Si

Comments

- In 2-states models energies are closer to the intrinsic level than in 3states models
- Yet they both reproduce correctly the level of leakage current
- And the CCE
- Why then do they differ in the predicted electric field?
- Use grazing angle technique, edge-TCT and TPA to study "your" field

AVAILABLE SOFTWARE

Available software

- By now you should know that the most used TCAD tools in HEP are:
 - Silvaco ATLAS
 - Synospys SENTAURUS
- And that the two do not agree on some fundamental aspects ©
 - AIDA 2020 WP7 meeting (Paris, 2/2016):
 https://indico.cern.ch/event/477003/contributions/1155199/
 https://indico.cern.ch/event/477003/contributions/1155199/
 https://attachments/1234150/1811069/bomben comparison 160225.pdf
 - 28th RD50 WS (Torino, 6/2016):
 https://agenda.infn.it/getFile.py/access?
 https://agenda.infn.it/getFile.py/access?
 https://agenda.infn.it/getFile.py/access?
 - 31st RD50 WS (Geneva, 11/2017):
 https://indico.cern.ch/event/663851/contributions/2788159/
 attachments/1562199/2460062/bomben_silvaco_simulations.pdf

So....

- If you use Synopsys you are not alone (Hamburg, LHCb, Perugia, MPP, ...)
- If you use Silvaco... let me know ©

Activation energy vs bandgap energy in Silvaco

Thermal carrier velocities to be tuned too

1D VS 2D VS 3D VS 4D SIMULATIONS

1D vs 2D simulations

1D simulations are OK for:

- Leakage current density
- Electrode to backside capacitance
- Charge collection efficiency
 - For pads
 - For strip detectors at low fluences

2D simulations are OK for:

- Interstrips capacitance
- Charge collection efficiency
 - For strip detectors
 - For pixels detectors at low fluences

2D vs 3D simulations

2D simulations are OK for:

3D simulations are perfect for:

- Interstrips capacitance
- Charge collection efficiency
 - For strip detectors
 - For pixels detectors at low fluences

- Interpixels capacitance
- Charge collection efficiency
 - For pixel detectors

Ramo Potential: 1D vs 2D

$3D 50x50 \mu m^2 structure$

Ramo Potential: 3D

Ramo potential: comparison

Charge Collection Efficiency: comparison

Perugia model, Q(3 strips sim.)/Q(single strip)

4D simulations?

- Time dependent simulations of segmented LGADs...
- Computational complexity might be prohibitive, though

CONCLUSIONS

Conclusions and Outlook

- TCAD simulations help in optimizing new detector design and they offer insight in observables otherwise difficult to access
 - e.g. electric field, ramo potential
- It is important to correctly model the detector geometry to get the correct answer, even if in some cases simple approaches are possible
- The challenge of HL-LHC for silicon detectors is signal loss
- For this challenge TCAD simulations have to be validated on testbeam data to assess their predictive power
- Correct temperature dependence and annealing are not yet correctly modelled in actual radiation damage models
- Future: at the moment a combination of Geant4 and TCAD looks like the best way to make solid predictions
 - Allpix & allpix-sqaured; application: see also the talk by Lorenzo Rossini on new ATLAS pixel digitizer

Backup

3D mesh

Doping

