

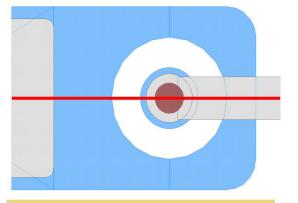
13th Trento Workshop on Advanced Silicon Radiation Detectors New Approaches to HEP Sensors at CiS

Munich, 19.02. – 21.02.2018

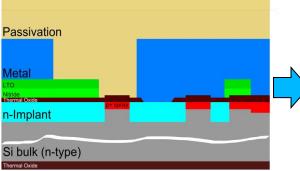
<u>Arno E. Kompatscher</u> | Tobias Wittig | Alexander Lawerenz | Ralf Röder

1. Bias grid alternatives: fuses

first dummy wafer run, electrical fuse tests, etching tests, sensor waferrun completed this week, dummy flip chipping, testing with x-ray


2. Active edge sensors

Project completed, some results


3. Trenches as pixel isolation, 3D-sensors

Bias rail alternatives ^L proposed solution

- idea: implementation of "fuses"
 - very thin metal traces on top of the final passivation
- sensor test with short-cutted pixel matrix

	Residual metal →	∱ Fuse
	Metal	
	n-Implant	
	Si bulk (n-type)	

Removal of fuses afterwards:

- very short etching step
- laser
- melting by applying high currents

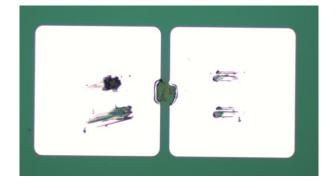
Arno E. Kompatscher

13th Trento Workshop

but: problems with thickness of metal layer 25, 50, 150, 300 nm thickness too thin for needle: sometimes metal

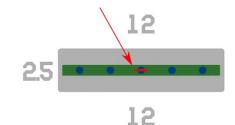
Bias rail alternatives

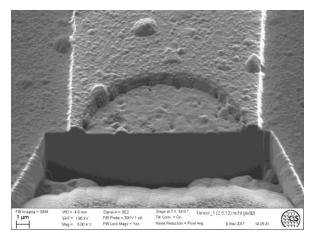
^L dummy fuse tests


 too thin for needle: sometimes metal melted/scratched contact point

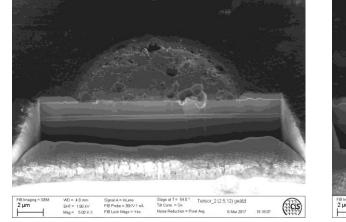
first tests of "burning" fuses successful

- no issue though: pads were only for proof of principle
- additional test on prototype (2nd wafer run): wet etching!

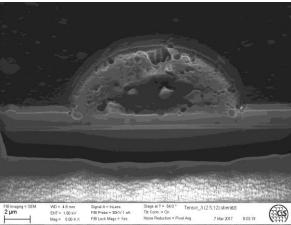

13th Trento Workshop



Bias rail alternatives ^L etching tests: FIB analysis



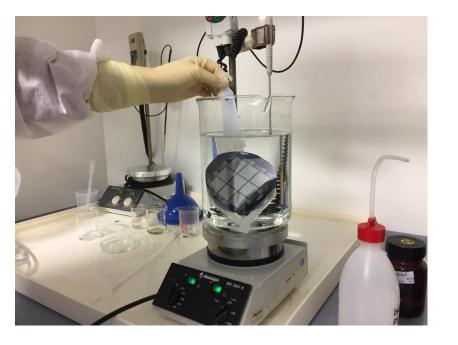
not etched


Metal rail (fuse) clearly visible

etched

Fuse etched away

over-etched

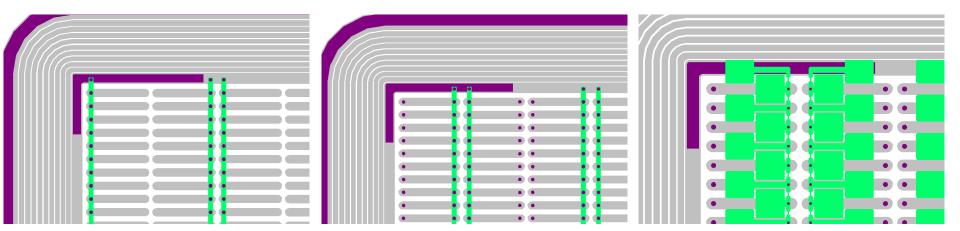


Twice the etching time of "etched"

Arno E. Kompatscher

13th Trento Workshop

Bias rail alternatives ^L etching tests: results



- Etching successful
- Very promising: even with significant over etching acceptable
- With new layout promising cheap alternative
- More reproducible and cleaner than burning out (as expected)

Bias rail alternatives ^L sensor wafer run: variants

Bias rail over bump openings

Bias rail oposite of bump openings (same position as punch through in conventional FE-I4) With pads for needle prober access

Bias rail alternatives ^L summary

8

- Burning tests with dummy wafer run expectedly not very reliable
- Etching tests very promising: reproducible results with low risk of failure
- Sensor wafer run being finished this week

Outlook:

- Initial characterization: is temporary metal suitable for IVmeasurements?
- Flip chipping with FEs and glass wafer dummies
- Tests with x-ray source

Arno E. Kompatscher

5) side wall doping

1) implantation of back side

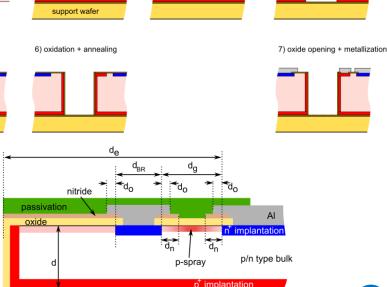
, p+∫

sensor wafer

2) bonding to support wafer

sensor wafer

(+ wafer thinning)


doping of side walls

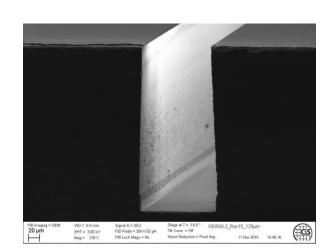
- numerous edge designs had been simulated
 - promising most ones were implemented in the layout

Active edges

^L wafer run reduction of inactive sensor edge by

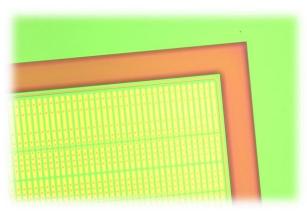
- several parameters are varied ٠
 - p- and n-type bulk
 - sensor thickness (300 & 100µm)
 - three side wall doping methods
 - trench widths

oxidation + implantation


4) etching trenches

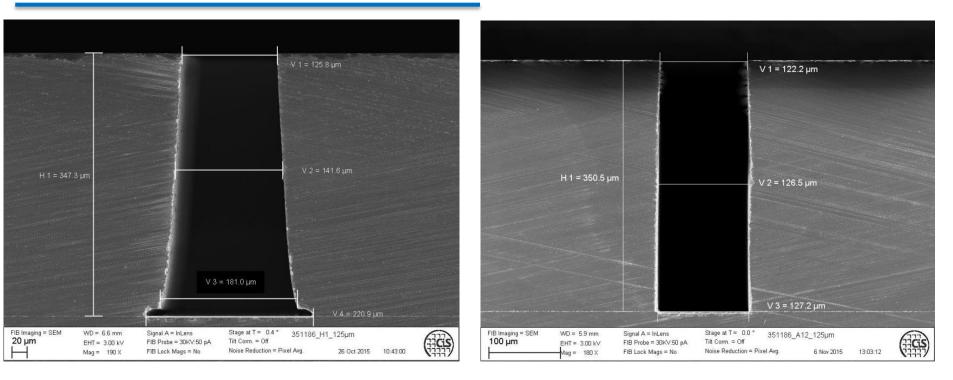
13th Trento Workshop

Munich | Feb. 20, 2018


Active edges ^L wafer run

- ICP trench etching step was challenging
- didn't have much experience up to now
- dummy trials to adjust etching parameters
- optimized the etching homogeneity at the wafer edge
- most of the side walls look fine

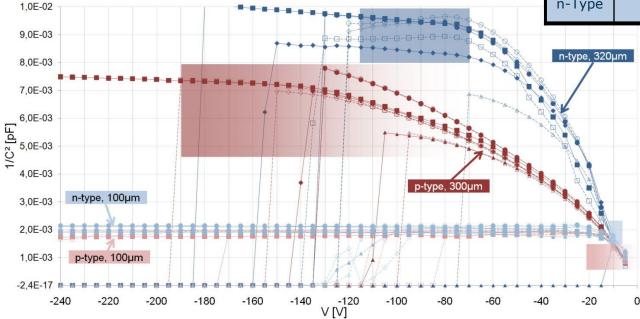
10


13th Trento Workshop

Active edges

11

^L wafer run: optimization of trench geometry



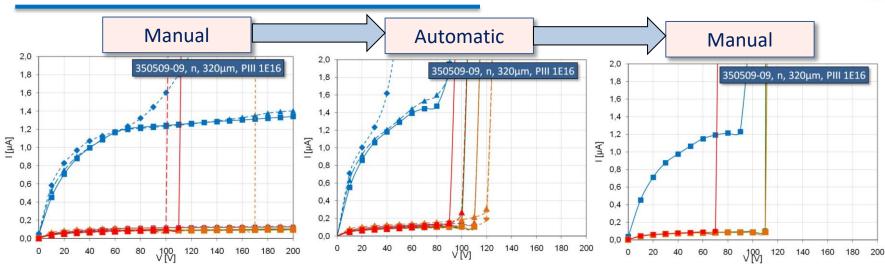
Arno E. Kompatscher

13th Trento Workshop

Active edges ^L wafer run: CV measurements

	Thickness [µm]	V _{depl} [V] Calcul.	V _{depl} [V] measured	V _{op} [V]
р-Туре	300	<190	130	170
р-Туре	100	<21	<20	50
n-Type	320	70115	60	100
n-Type	100	711	<20	50

- Measured V_{dep} fit to calculated values
- Thick wafers V_{depl} up to
 130V
- Thinned wafers V_{depl} as low as 20V


Arno E. Kompatscher

13th Trento Workshop

Munich | Feb. 20, 2018

Active edges

^L wafer run: IV measurements

- Random selection, measured manually
- Excellent results
- No breaktroughs under 200V for most diodes
- Systematic automatic measurement
- Inconsistencies between curves
- Majority of sensors break through at ~80...120V

- Manual Cross-Check
- Early breakthroughs remain
 - Assumption: sensors were affected/damaged irreversibly by automatic prober

Arno E. Kompatscher

13th Trento Workshop

Munich | Feb. 20, 2018

- 📥 - FEI4_02

- FEI4_03

- T250L-D01

- + - T250L-D02

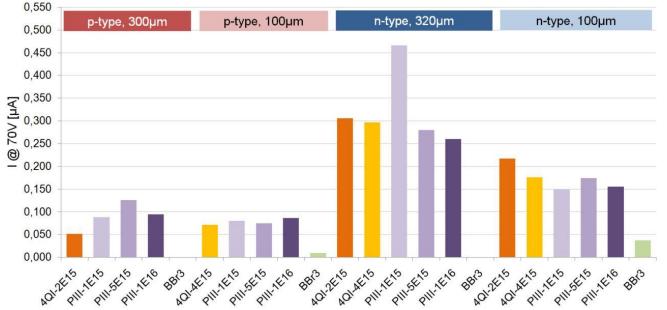
- T250L-D03

- + - T250L-D04

- T250L-D05

T250L-D06

T250L-D07


T250L-D08

- T250L-D09

T250L-D10

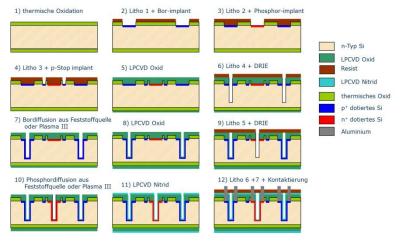
Active edges L wafer run: implantation variants

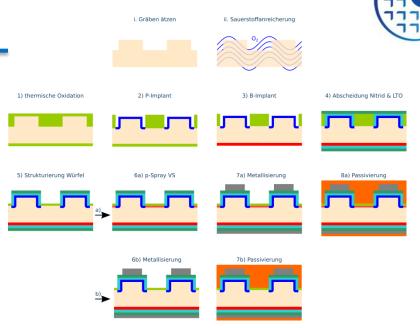
Leakage currents @ 70V

- No significant differences between 4QI and PIII
- BBr₃: Faktor 10 (p-type) ... 5 (n-type) smaller
- Matches doping profiles
- Otherwise substrate material more influence
 - n-type material of inferior quality?

Arno E. Kompatscher

13th Trento Workshop


Active edges L summary



- Technological development & processing of active edge sensors successful
- Even after obviously damaged (by automatic prober), thinned sensors have excellent yield with up to 90 % for d_e =50µm
- Significant reduction in yield only for $d_e=30\mu m$
- No disadvantages with thinned sensors
- Implantation Variants:
 - **4QI:** Reliable and reproducible, no disadvantages with larger angles
 - PIII: IV results good, doubts concerning doping profiles (susceptible to mechanical defects?)
 - **BBr**₃: many advantages in principle (high and deep doping, lower leakage currents)

Trench detectors and 3D^L new project sneak peak

3D-sensor process

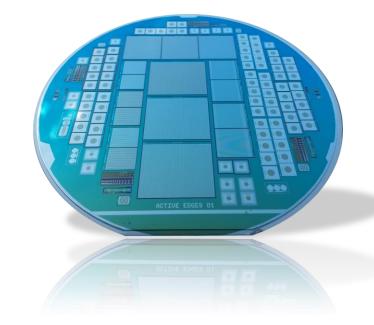
Planar "trench detector" process

Aim: establish 3D-sensor processing at CiS while developing a versatile prototyping technique for variable geometries

Arno E. Kompatscher

13th Trento Workshop

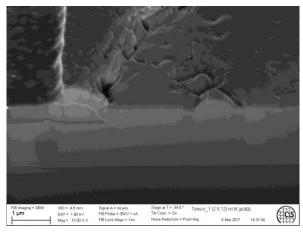
Arno E. Kompatscher


13th Trento Workshop

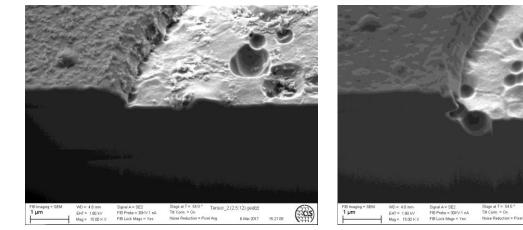
CiS is developing several different technologies to be able to cope with future HL-LHC challenges

Summary

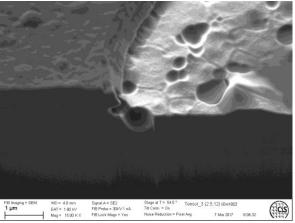
- Active Edge project completed
- Alternative biasing methods for pixels: sensor wafer run to be finished
- New project: 3D processing



Backup ^L etching tests


18

not etched


Metal rail (fuse) clearly visible

etched

Fuse etched away

over-etched

Twice the etching time of "etched"

Arno E. Kompatscher

13th Trento Workshop