

Status and plans of the CLIC accelerator study

Philip Burrows

John Adams Institute
Oxford University

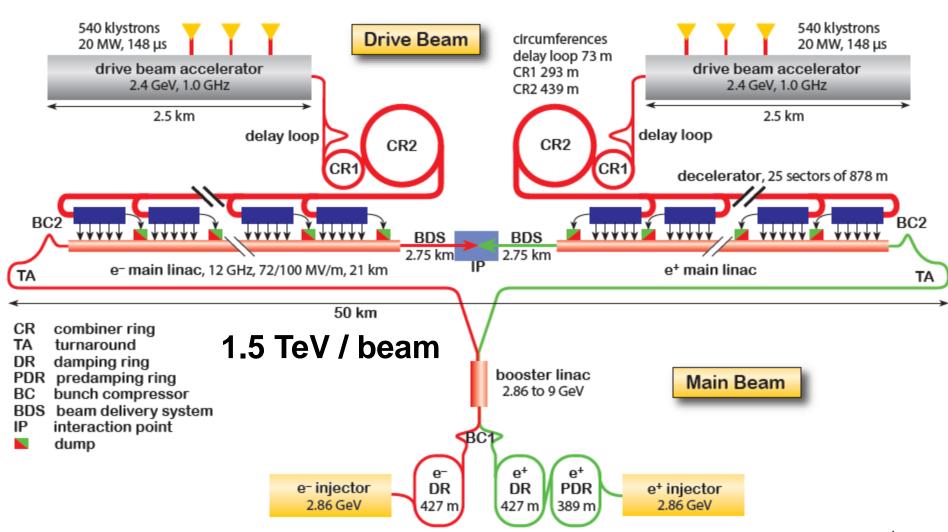
On behalf of the CLIC Collaborations
Thanks to all colleagues for materials

Outline

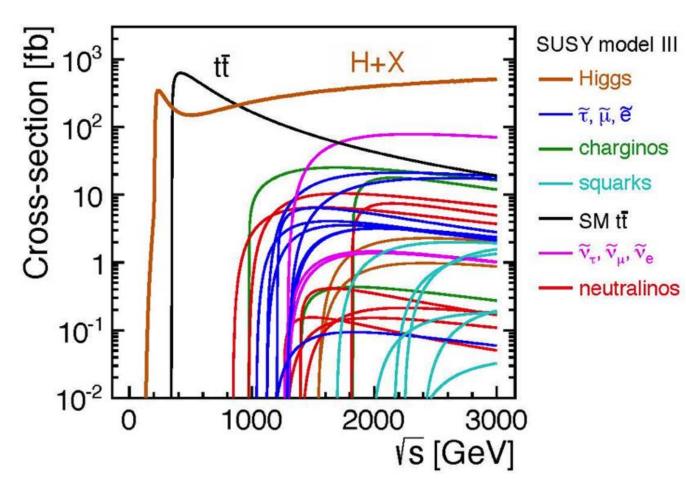
- Brief introduction to CLIC
- Project staging
- Strategic plans → 2019 and beyond

Apologies for skipping many results + details

CLIC Collaborations


31 Countries - over 70 Institutes

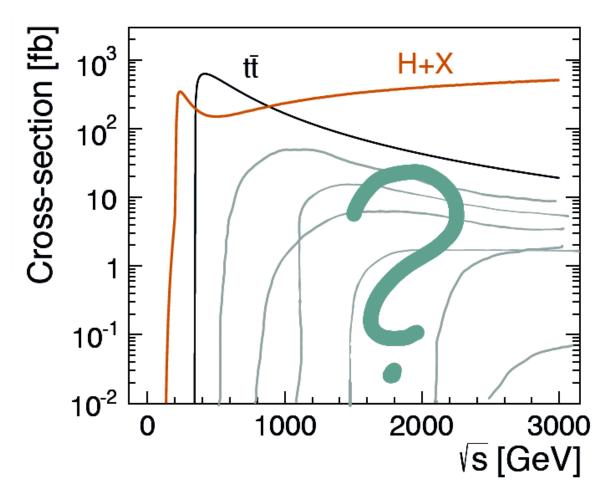
CLIC layout (3 TeV)



CLIC physics context

Energy-frontier capability for electron-positron collisions,

for precision exploration of potential new physics that may emerge from LHC



CLIC physics context

Energy-frontier capability for electron-positron collisions,

for precision exploration of potential new physics that may emerge from LHC

CERN scientific strategy: 3 main pillars

Full exploitation of the LHC:
□ successful operation of the nominal LHC (Run 2, LS2, Run 3)
□ construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC
Scientific diversity programme serving a broad community:
□ current experiments and facilities at Booster, PS, SPS and their upgrades
(Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.)
□ participation in accelerator-based neutrino projects outside Europe (presently
mainly LBNF in the US) through CERN Neutrino Platform
Preparation of CERN's future:
□ vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness
(including superconducting high-field magnets, AWAKE, etc.)
□ design studies for future accelerators: CLIC, FCC (includes HE-LHC)
☐ future opportunities of scientific diversity programme ("Physics Beyond Colliders" Study Group)

Important milestone: update of the European Strategy for Particle Physics (ESPP), to be concluded in May 2020

CERN scientific strategy: 3 main pillars

Full exploitation of the LHC:
□ successful operation of the nominal LHC (Run 2, LS2, Run 3)
□ construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC
Scientific diversity programme serving a broad community:
□ current experiments and facilities at Booster, PS, SPS and their upgrades
(Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.)
□ participation in accelerator-based neutrino projects outside Europe (presently
mainly LBNF in the US) through CERN Neutrino Platform
Preparation of CERN's future:
□ vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness
(including superconducting high-field magnets, AWAKE, etc.)
□ design studies for future accelera ors: CLIC, FCC (includes HE-LHC)
☐ future opportunities of scientific diversity programme ("Physics Reyond Colliders" Study Group)

Important milestone: update of the European Strategy for Particle Physics (ESPP), to be concluded in May 2020

CERN scientific strategy: 3 main pillars

Full exploitation of the LHC: ■ successful operation of the nominal LHC (Run 2, LS2, Run 3) □ construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC Scientific diversity programme serving a broad community: current experiments and facilities at Booster, PS, SPS and their upgrades (Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.) □ participation in accelerator-based neutrino projects outside Europe (presently mainly LBNF in the US) through CERN Neutrino Platform Preparation of CERN's future: □ vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness (including superconducting high-field magnete, AWAKE, etc ☐ design studies for future accelerators: CLIC, FCC (includes HE-LHC) ☐ future opportunities of scientific description of the first programme ("Physics Reyond Colliders" Study Group)

We are vigorously preparing input for European Strategy PP Update:

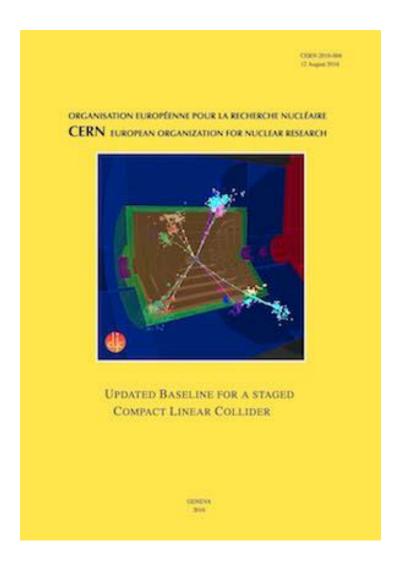
- Project Plan for CLIC as a credible post-LHC option for CERN
- Initial costs compatible with current CERN budget
- Upgradeable in stages over 20-30 years

CLIC staging

Optimize machine design w.r.t. cost and power for a staged approach to reach multi-TeV scales:

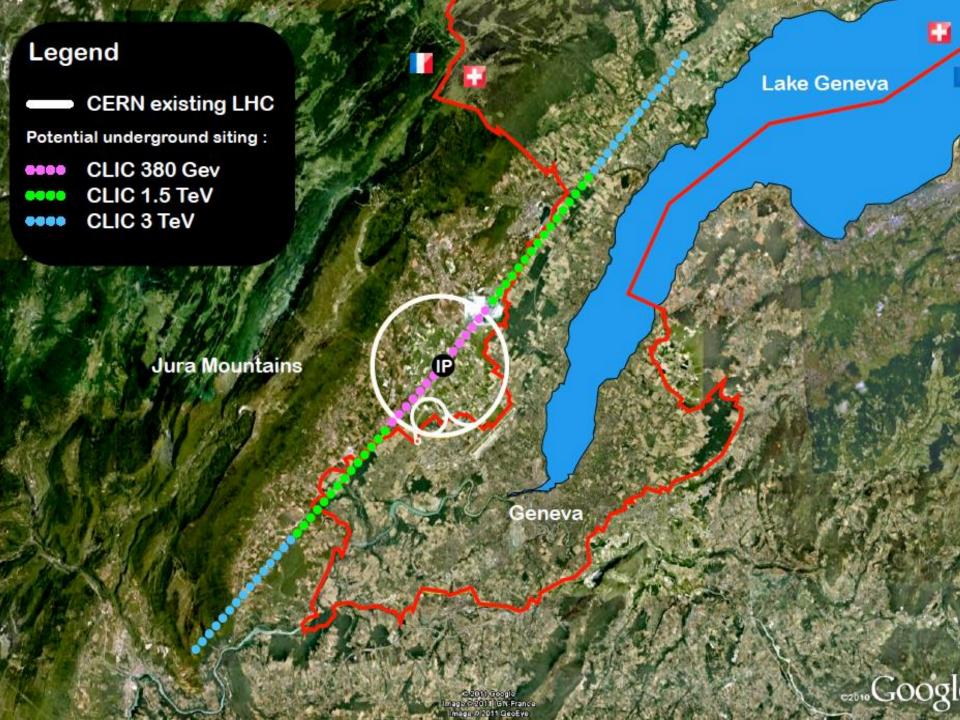
- ~ 380 GeV (optimised for Higgs + top physics)
- ~ 1500 GeV
- ~ 3000 GeV

Adapting appropriately to LHC + other physics findings


Possibility for first physics no later than 2035

Project Plan to include accelerator, detector, physics

Updated baseline document

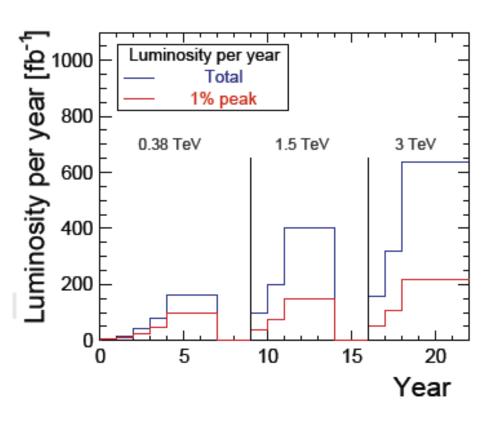


The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e⁺e⁻ collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top measurements. Subsequent stages will focus on measurements of rare Higgs processes, as wells as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.

CERN-2016-004

arXiv:1608.07537

New reference plots for physics, luminosity, power, costs ...



Updated CLIC run model

Stage	\sqrt{s} (GeV)	$\mathscr{L}_{int} (fb^{-1})$
1	380 350	500 100
2	1500	1500
3	3000	3000

Current energy stage parameters

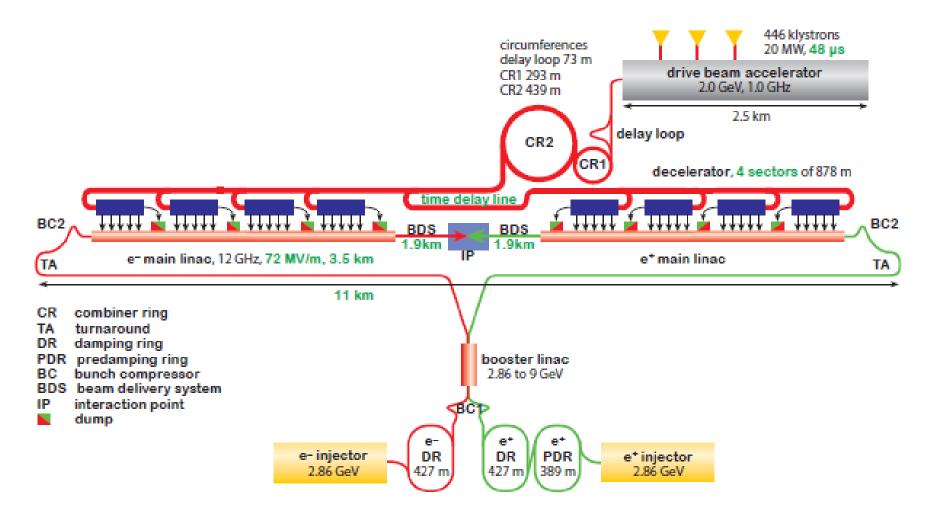
Table 8: Parameters for the CLIC energy stages. The power consumptions for the 1.5 and 3 TeV stages are from the CDR; depending on the details of the upgrade they can change at the percent level.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	f_{rep}	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m pulse}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	£	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Charge per bunch	N	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_{x}/σ_{y}	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_{x}/\varepsilon_{y}$	nm		660/20	660/20
Normalised emittance	$\varepsilon_{x}/\varepsilon_{y}$	nm	950/30	_	_
Estimated power consumption	$P_{ m wall}$	MW	252	364	589

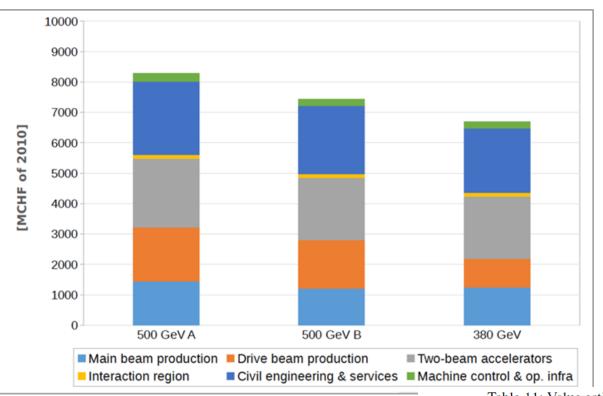
Current energy stage parameters

Table 8: Parameters for the CLIC energy stages. The power consumptions for the 1.5 and 3 TeV stages are from the CDR; depending on the details of the upgrade they can change at the percent level.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	f_{rep}	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m pulse}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	\mathscr{L}	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Charge per bunch	N	10 ⁹	5.2	3.7	3.7
Bunch length	σ.	μm	70	44	44
IP beam size	σ_{x}/σ_{y}	nm	149/2.9	~ 60/1.5	~ 40/1
Normalised emittance (end of linac)	$\varepsilon_{x}/\varepsilon_{y}$	nm	_	660/20	660/20
Normalised emittance	$\varepsilon_{\!\scriptscriptstyle X}/\varepsilon_{\!\scriptscriptstyle y}$	nm	950/30	_	_
Estimated power consumption	P_{wall}	MW	252	364	589


First stage energy ~ 380 GeV

Parameter	Unit	380 GeV	3 TeV
Centre-of-mass energy	TeV	0.38	3
Total luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.5	5.9
Luminosity above 99% of vs	10 ³⁴ cm ⁻² s ⁻¹	0.9	2.0
Repetition frequency	Hz	50	50
Number of bunches per train		352	312
Bunch separation	ns	0.5	0.5
Acceleration gradient	MV/m	72	100
Site length	km	11	50



New CLIC layout 380 GeV

Preliminary cost estimate (380GeV)

For CDR 2012 WBS cost basis

Optimised structures, beam parameters and RF system

Some costs scaled from 500 GeV

Further optimisation ongoing

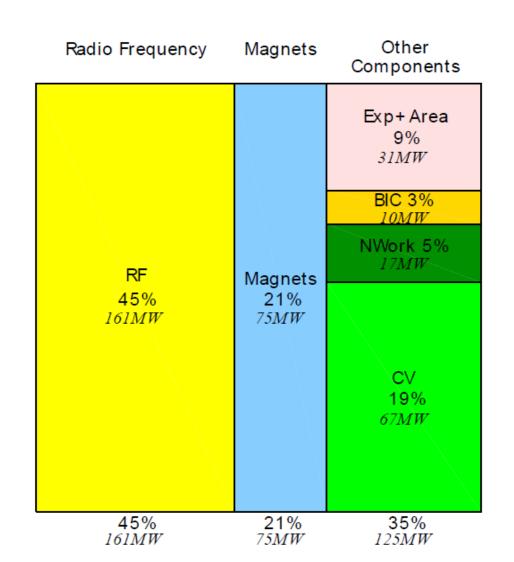
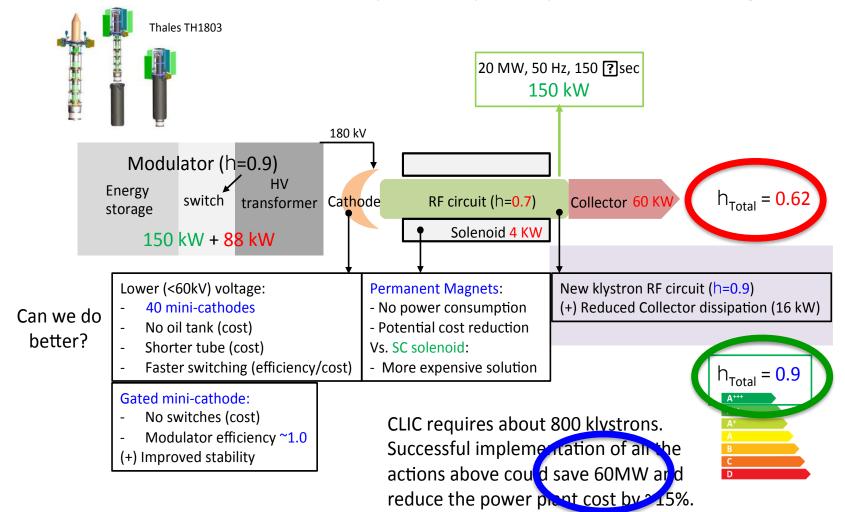

Table 11: Value estimate of CLIC at 380 GeV centre-of-mass energy.

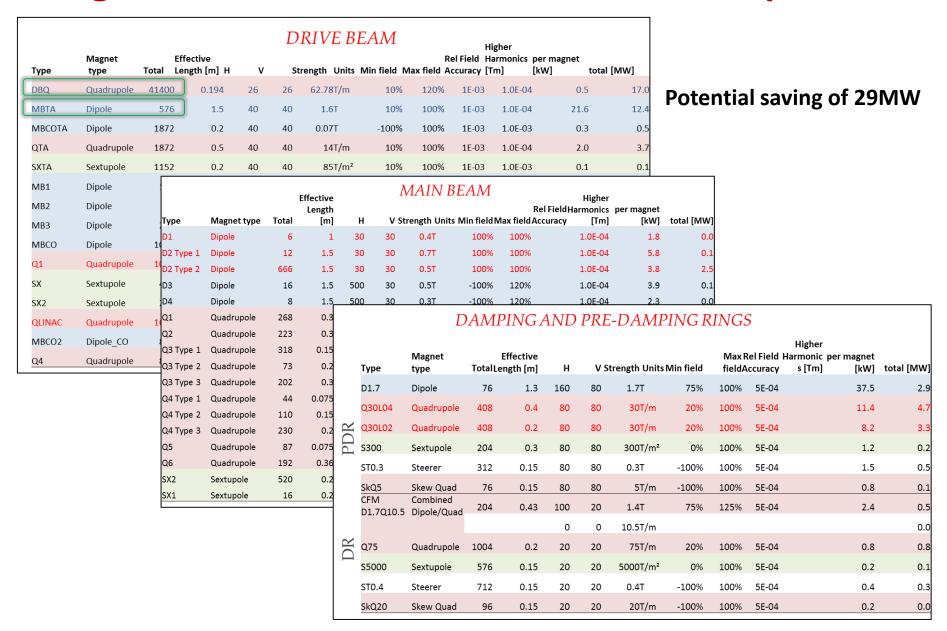
Table 11: Value estimate of CLIC at 380 GeV centre-of-mass energy.				
	Value [MCHF of December	2010]		
Main beam production		1245		
Drive beam production		974		
Two-beam accelerators		2038		
Interaction region		132		
Civil engineering & services		2112		
Accelerator control & operational infrastructure		216		
Total		6690		

AC power (1.5 TeV)



Klystron/modulator efficiencies

ECFA- Linear Collider Workshop 2016

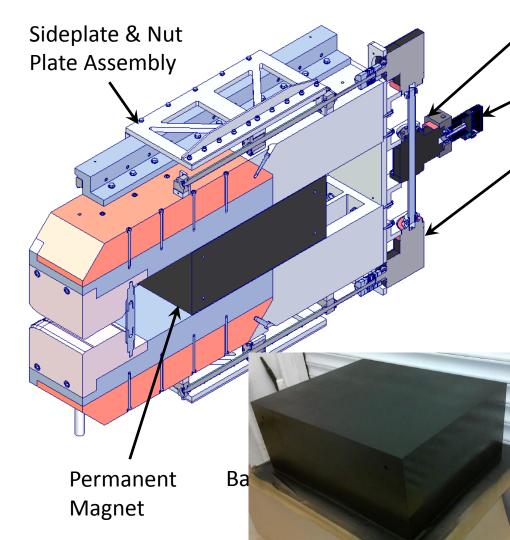


CLIC Multi-beam (6/10 beams) pulsed klystron power balance diagram.

I. Syratchev, June 2016, Santander, Spain.

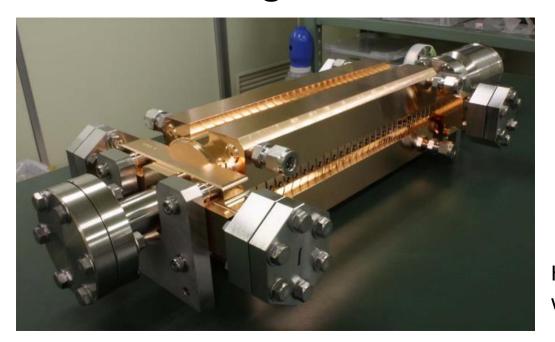
Magnet Assessment – use PMs wherever possible

Adjustable-field PM prototypes

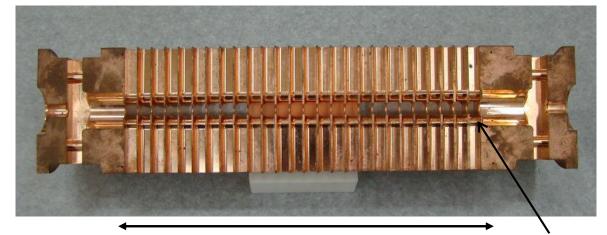

High Energy Quad

Low Energy Quad

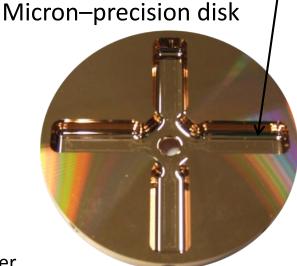
Dipole design



CLIC accelerating structure


Outside

11.994 GHz X-band 100 MV/m Input power ≈50 MW Pulse length ≈200 ns Repetition rate 50 Hz

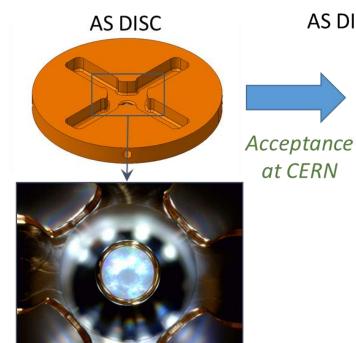


HOM damping waveguide

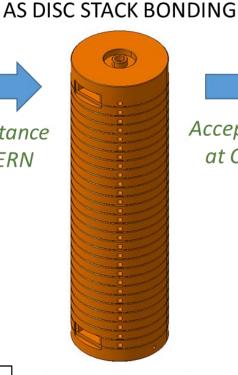
Inside

6 mm diameter beam aperture

Walter Wuensch, CERN

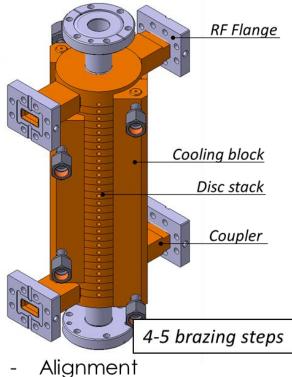

25 cm CLIC Project Review, 1 March 2016

Assembly – towards industrialization



<u>Cell shape accuracy - 0.004 mm</u> <u>Flatness - 0.001 mm</u> Surface roughness - Ra 0.025

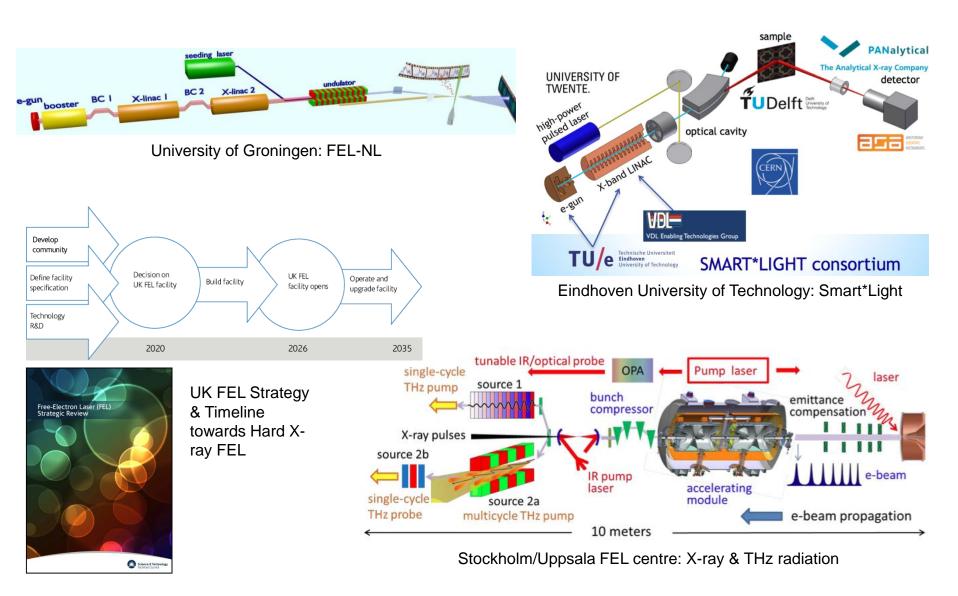
<u>μm</u>


Commercial suppliers:

- 4 qualified companies for UP machining;
- Single-crystal diamond tool required.

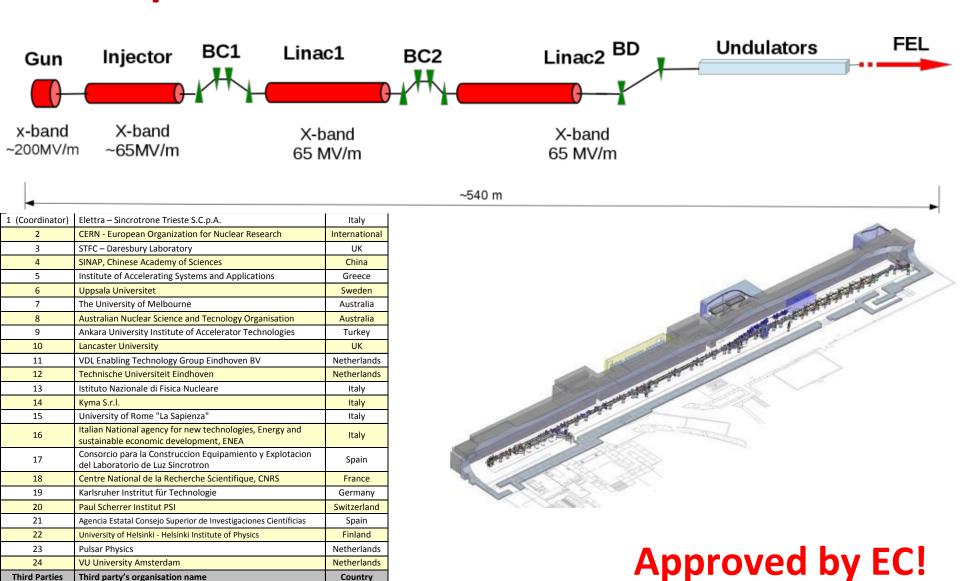
Acceptance at CERN


AS ASSEMBLY


- **REQUIREMENTS:** Sp
 - Special tooling
 - Clean environment

Suppliers:

- 3 qualified companies for brazing/bonding operations, supervision by CERN;
- Collaborators.



European National/Institute XFEL Ambitions

Andrea Latina

CompactLight – EU H2020 design study for a compact XFEL based on X-band structures

Norway

Netherlands

Universitetet i Oslo - University of Oslo

Advanced Research Center for Nanolithography (JRU of VU)

Outlook -> European Strategy

Aim to:

- Present CLIC as a credible post-LHC option for CERN
- Provide optimized, staged approach starting at 380 GeV, with costs and power not excessive compared with LHC, and leading to 3 TeV
- Upgrades in 2-3 stages over 20-30 year horizon
- Maintain flexibility and align with LHC physics outcomes

CLIC roadmap

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Outlook -> European Strategy

Key deliverables:

Project plan: physics, machine parameters, cost, power, site, staging, construction schedule, summary of main tech. issues, prep. phase (2020-2025) summary, detector studies

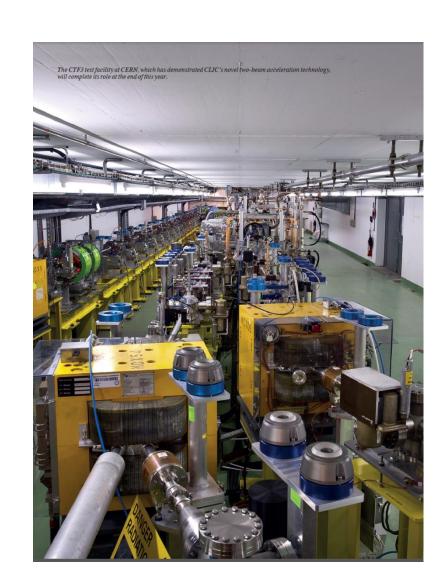
Preparation-phase plan: critical parameters, status and next steps - what is needed before project construction, strategy, risks and how to address them

Thanks for your attention

Questions?

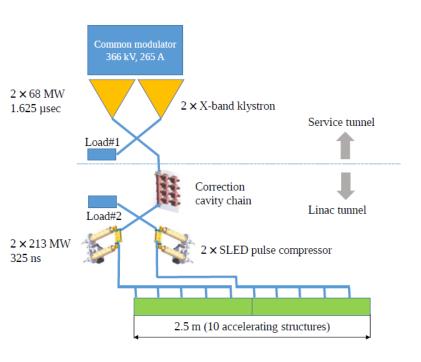
Have a good workshop!

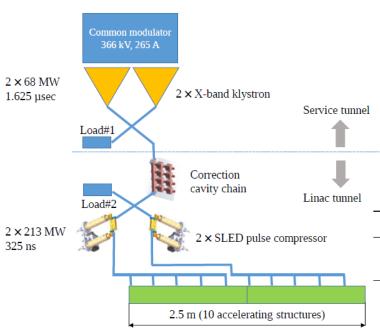
Backup slides



CERN Courier article

"CLIC steps up to the TeV challenge" by Philipp Roloff and Daniel Schulte (November 2016)


http://cerncourier.com/cws/article/cern/66567


Klystron version (380 GeV)

Klystron version (380 GeV)

First look at costs – preliminary

High-efficiency klystron work very promising – not yet included

Table 12: The parameters for the structure designs that are detailed in the text.

Parameter	Symbol	Unit	DB	K	DB244	K244
Frequency	f	GHz	12	12	12	12
Acceleration gradient	G	MV/m	72.5	75	72	79
RF phase advance per cell	$\Delta \phi$	0	120	120	120	120
Number of cells	$N_{\rm c}$		36	28	33	26
First iris radius / RF wavelength	a_1/λ		0.1525	0.145	0.1625	0.15
Last iris radius / RF wavelength	a_2/λ		0.0875	0.09	0.104	0.1044
First iris thickness / cell length	$d_1/L_{\rm c}$		0.297	0.25	0.303	0.28
Last iris thickness / cell length	$d_2/L_{\rm c}$		0.11	0.134	0.172	0.17
Number of particles per bunch	N	10 ⁹	3.98	3.87	5.2	4.88
Number of bunches per train	$n_{\rm b}$		454	485	352	366
Pulse length	$ au_{ m RF}$	ns	321	325	244	244
Peak input power into the structure	P_{in}	MW	50.9	42.5	59.5	54.3
Cost difference (w. drive beam)	$\Delta C_{\mathrm{w. DB}}$	MCHF	-50	(20)	0	(20)
Cost difference (w. klystrons)	$\Delta C_{\mathrm{w.~K}}$	MCHF	(120)	50	(330)	240

Klystron version (380 GeV)

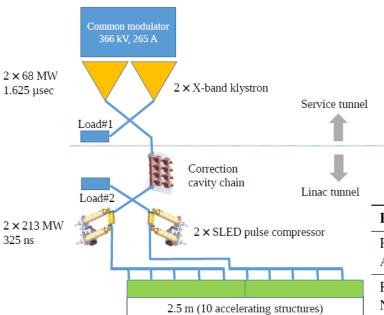


Table 12: The parameters for the structure designs that are detailed in the text.

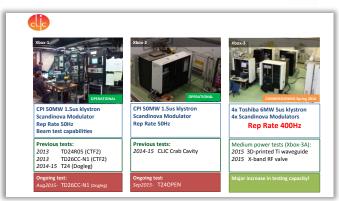
Parameter	Symbol	Unit	DB	K	DB244	K244
Frequency	f	GHz	12	12	12	12
Acceleration gradient	G	MV/m	72.5	75	72	79
RF phase advance per cell	$\Delta \phi$	0	120	120	120	120
Number of cells	$N_{\rm c}$		36	28	33	26
First iris radius / RF wavelength	a_1/λ		0.1525	0.145	0.1625	0.15
Last iris radius / RF wavelength	a_2/λ		0.0875	0.09	0.104	0.1044
First iris thickness / cell length	$d_1/L_{\rm c}$		0.297	0.25	0.303	0.28
Last iris thickness / cell length	$d_2/L_{\rm c}$		0.11	0.134	0.172	0.17
Number of particles per bunch	N	10 ⁹	3.98	3.87	5.2	4.88
Number of bunches per train	$n_{\rm b}$		454	485	352	366
Pulse length	$ au_{ m RF}$	ns	321	325	244	244
Peak input power into the structure	$P_{\rm in}$	MW	50.9	42.5	59.5	54.3
Cost difference (w. drive beam)	$\Delta C_{\mathrm{w. DB}}$	MCHF	-50	(20)	0	(20)
Cost difference (w. klystrons)	$\Delta C_{\rm w-K}$	MCHF	(120)	50	(330)	240

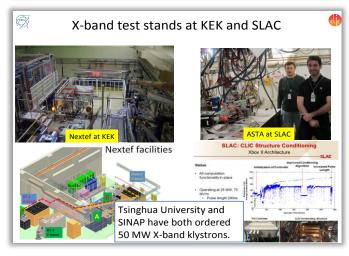
Costings relative to drive-beam version may be lower ~ 5%

Cost and power updates foreseen

A WBS based bottom up costing and power estimate, for drive-beam and klystron based machines, will be done for the Project Plan in ~2019.

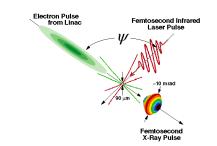
Power and cost related studies that are expected to make significant changes:


Action (X = significant impact expected)	Cost	Power/Energy	Comments
Structure/parameters optimisation, minor other changes	X	Х	Ok for now, 380 GeV, 1.5 10^34
Further possibility: lower inst. luminosity or initial energy (250 GeV)	X	X	Integrated lum. goal can be maintained
Known corrections needed for injectors and Cooling/Ventilation	X	X	Combination of over-estimates and average vs max in CDR
Structure manufacturing	X		Optimise, remove steps, halves
High eff. Klystrons and RF distribution	X	Х	Technical studies where gains can be large
Magnets	?	X	Technical studies
Running scenario (daily, weekly, yearly)		X (energy, cost)	Take advantage of demand changes
Commercial studies, currencies and reference costing date	X	Х	Examples: klystrons, CHF, CLIC and FCC will use similar convention

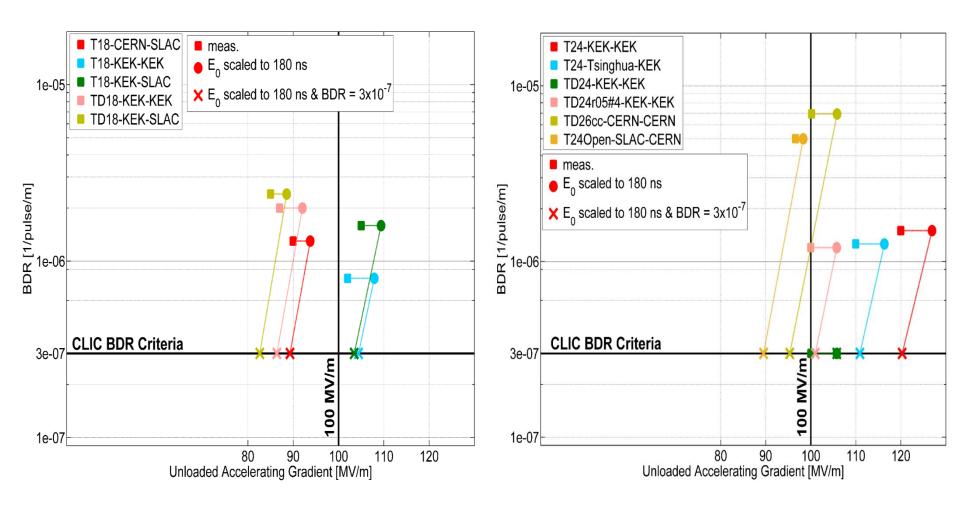


Existing and planned Xband infrastructures

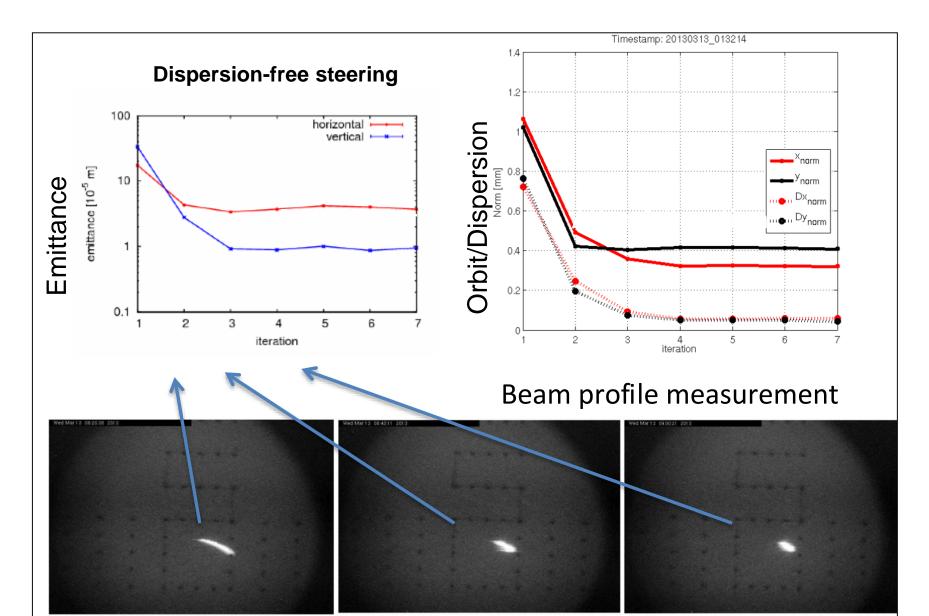
CERN	XBox-1 test stand	50 MW	Operational
	Xbox-2 test stand	50 MW	Operational
	XBox-3 test stand	4x6 MW	Commissioning
KEK	NEXTEF	2x50 MW	Operational, supported in part by CERN
SLAC	ASTA	50 MW	Operational, one structure test supported by CERN
	Design of high-efficiency X-band klystron	30 MW	Under discussion
Trieste	Linearizer for Fermi	50 MW	Operational
PSI	Linearizer for SwissFEL	50 MW	Operational
	Deflector for SwissFEL	50 MW	Planning
DESY	Deflector for FLASHforward	50 MW	Planning (note first two may share power unit)
	Deflector for FLASH2	50 MW	Planning
	Deflector for Sinbad	50 MW	Planning



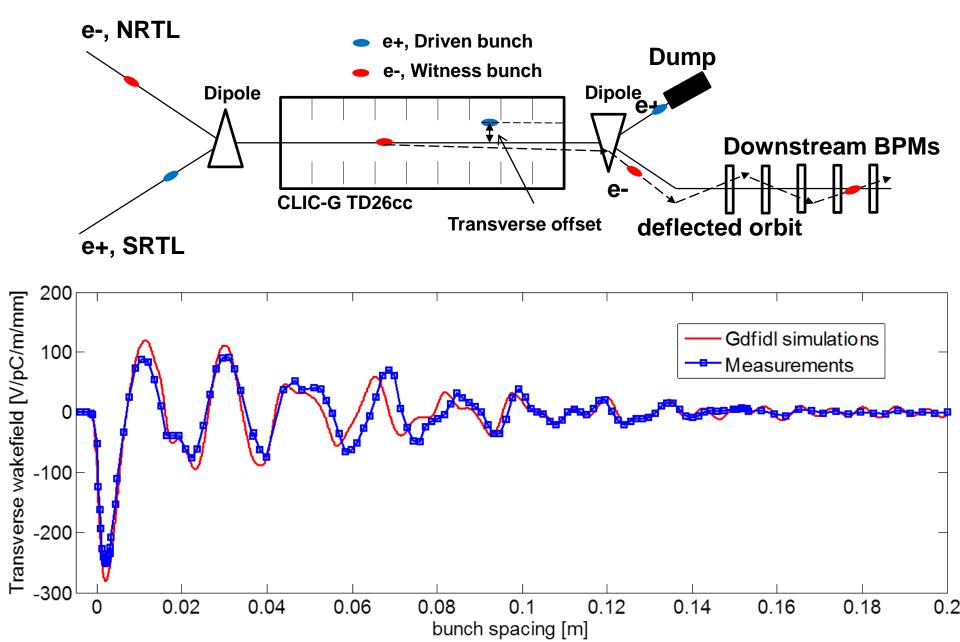
Existing and planned Xband infrastructures


Australia	Test stand	2x6 MW	Proposal, loan agreement from CERN
Eindhoven	Compact Compton source	6 MW	Proposal, request for loan from CERN
Uppsala	Test stand	50 MW	Proposal, request for loan of spare klystron from CERN
Tsinghua	Deflector for Compton source	50 MW	Ordered
	Linearizer for Compton source	6 MW	Planning
SINAP	Linearizer for soft X-ray FEL	6 MW	Ordered
	Deflectors for soft X-ray FEL	3x50 MW	Planning
Valencia	S-band test stand	2x10 MW	Under construction
STFC	Linearizer	6 MW	Under discussion
	Deflector	10 MW	Under discussion
	Accelerator	tbd	Under discussion

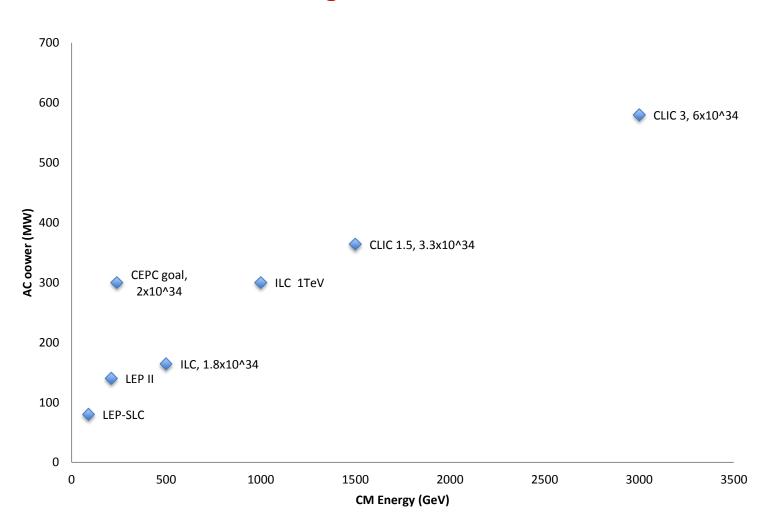
Accelerating gradient summary


Original test structure geometry.

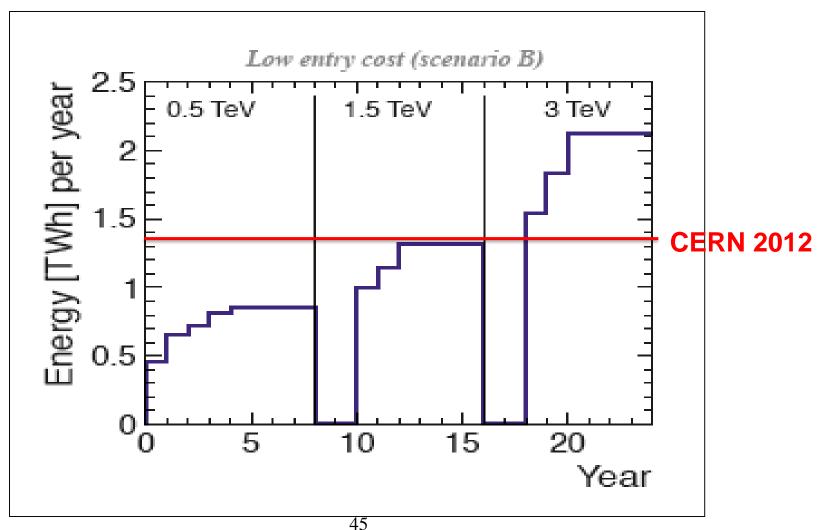
Baseline geometry, CLIC-G.
Newly optimized geometry, based on these results,
CLIC-G* now in production pipeline.

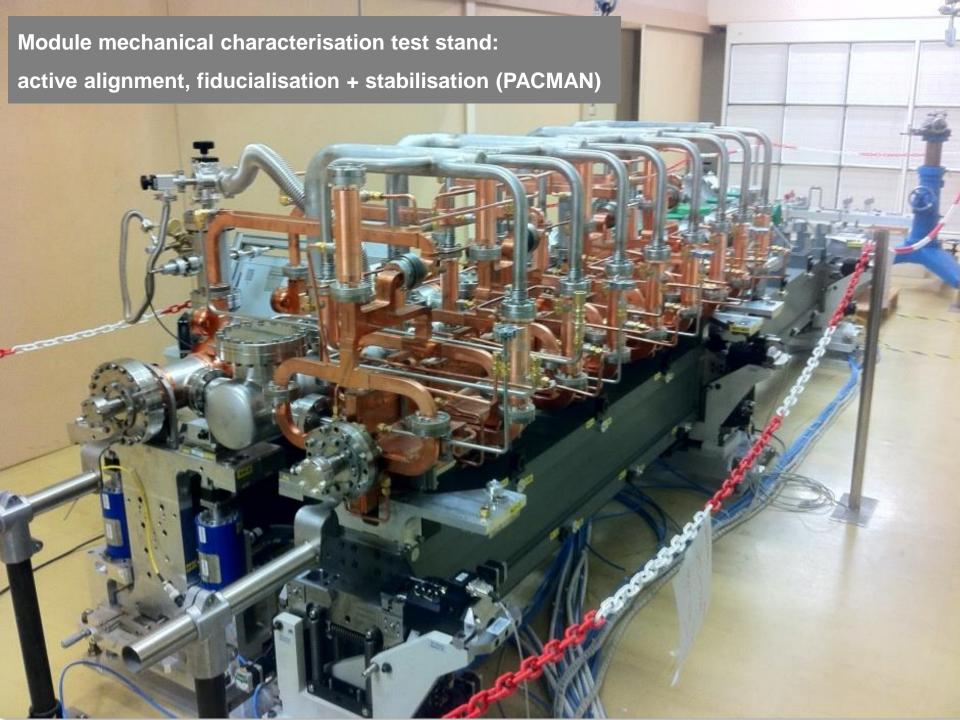


Beam tuning at FACET (SLAC)


FACET measurements of wakefields

AC power





Energy consumption

CLIC Higgs physics processes

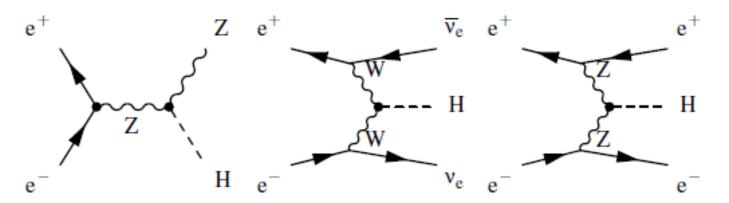


Figure 2: The three highest cross section Higgs production processes at CLIC.

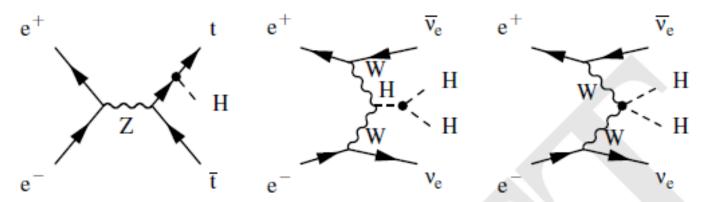
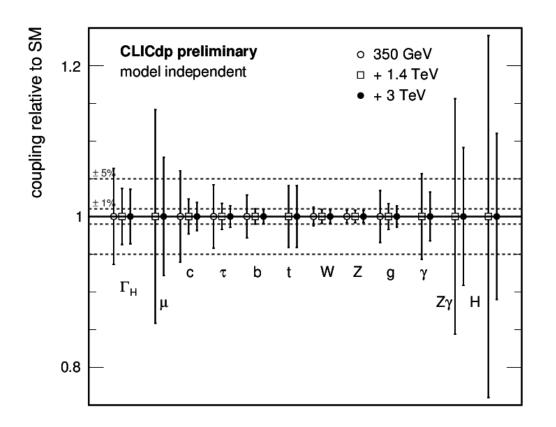
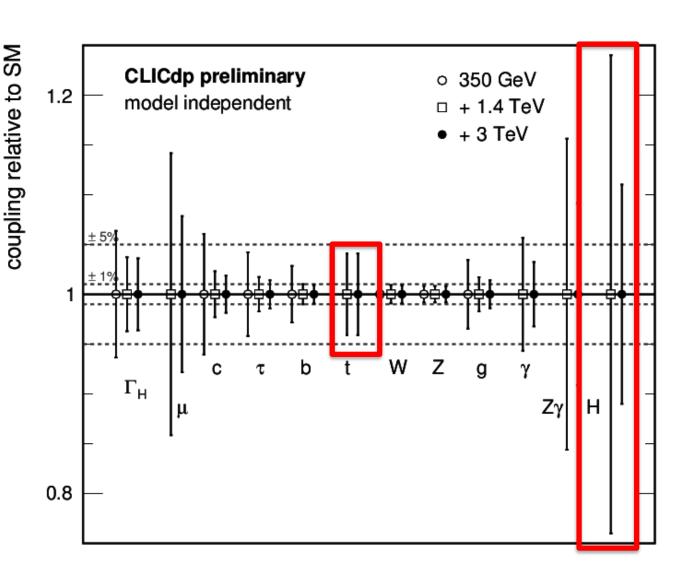



Figure 3: The main processes at CLIC involving the top Yukawa coupling g_{Htt} , the Higgs boson trilinear self-coupling λ and the quartic coupling g_{HHWW} .

CLIC Higgs physics capabilities

Parameter	Relative precision				
	350 GeV 500 fb ⁻¹	+ 1.4 TeV $+ 1.5 \text{ ab}^{-1}$	+ 3TeV + 2ab ⁻¹		
g _{HZZ}	0.8% 1.3%	0.8% 0.9%	0.8% 0.9%		
g _{Hbb} g _{Hcc}	2.8% 6.0%	1.0% 2.3%	0.9% 1.9%		
8ηττ 8ημμ	4.2%	1.7%	1.4% 7.8%		
g _{Hgg}	3.6%	1.7%	1.4%		
$g_{ m H\gamma\gamma}^\dagger \ g_{ m HZ\gamma}^\dagger$	_	5.7% 15.6%	3.2% 9.1%		
Γ_{H}	6.4%	3.7%	3.6%		



CLIC Higgs physics capabilities

Higgs couplings to heavy particles benefit from higher c.m. energies:

ttH ~ 4% HH ~ 10%

CLIC Higgs physics paper

Higgs Physics at the CLIC Electron-Positron Linear Collider (CLICdp collaboration paper)

40 pages, 123 authors, >25 full-simulation studies

CLICdp-Pub-2016-001 and <u>arXiv:1608.07538</u> (29/8/2016)

Submitted to EPJC – now addressing referees' comments

CLIC top physics example: form factors (380 GeV)

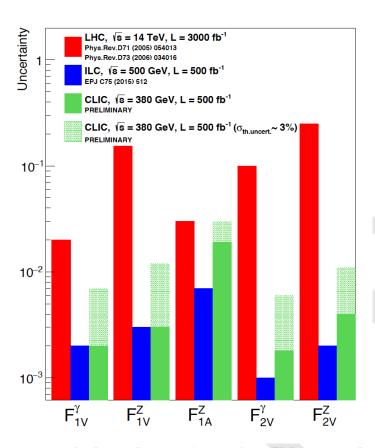
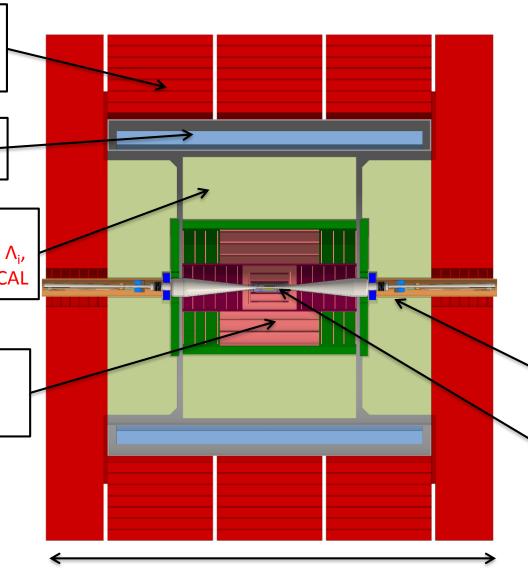


Figure 9: Uncertainties of the top quark form factors (assuming SM values for the remaining form factors) compared between estimations for LHC, ILC and CLIC [10]. The form factors are extracted from the measured forward backward asymmetry and cross-section. For the ILC, $\pm 80\%$ e⁻ polarisation and $\mp 30\%$ e⁺ polarisation are considered and for CLIC, $\pm 80\%$ e⁻

New CLIC detector model


return yoke (Fe) with muon-ID detectors

superconducting solenoid, 4 Tesla

fine grained (PFA) calorimetry, 1 + 7.5 Λ_i , Si-W ECAL, Sc-FE HCAL

silicon tracker, (large pixels / short strips)

Note: final beam focusing is outside the detector

11.4 m

end-coils for field shaping

forward region with compact forward calorimeters

ultra low-mass vertex detector, ~25 μm pixels

52