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Recap



CLIC Simulations

• Simulations show a stray field sensitivity down to the nT level.

RTML Transfer Line BDS Main Linac

Field tolerance for 0.4 nm 
emittance growth

Field tolerance for 2% luminosity loss
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Sources of Stray Fields

• Not all stray fields have equal importance.

• Frequencies less than 1 Hz will be reduced by the train-to-train feedback.

• Not sensitive to 50 Hz because 𝑓𝑟𝑒𝑝 = 50 Hz (removed by tuning).

Type Examples Amplitude Frequency

Natural Geomagnetic storms O(100 nT) < 1 Hz

Environmental Power lines O(nT) 50 Hz

Technical RF systems, etc. O(𝜇T) > 1 Hz
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Mitigation



Active                    vs.                 Passive

• Requires no measurement.

• A passive device just needs to 
be placed into the accelerator.

• Removes the need for a 
correction.

• Involves measuring a quantity in 
real-time.

• Using this measurement to 
influence the accelerator with 
an active device.

• Feedback and feedforward 
possible.
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Passive Mitigation



Passive Shielding - Mechanisms
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• There are two mechanisms of shielding magnetic fields:

Magnetostatic shielding Eddy current shielding



Passive Shielding - Considerations

• The effectiveness of a magnetic shield depends on:
• Shape geometry.

• Material properties: 𝜇, 𝜎.

• Frequency of external magnetic field: affects material properties.

• Strength of external magnetic field.

• These parameters also determine which mechanism is dominant.
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Passive Shielding – Magnetostatic Shielding

• The effectiveness of 
magnetostatic shielding of a 
cylindrical shell is given by
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• This increases with 
permeability and ratio of 
thickness ∆ to radius 𝑎.

𝑆 =

(𝜇𝑟 + 1)2−
(𝜇𝑟 − 1)2

4(
∆
2𝑎
)2+4

∆
2𝑎

+ 1

4𝜇𝑟



Passive Shielding – Eddy Current Shielding

• To be effective the thickness of the shield must be greater than the 
skin depth:

𝛿 =
2

𝜔𝜇0𝜇𝑟𝜎

• 𝜎 = conductivity 

• 𝜇 = 𝜇0𝜇𝑟 = permeability

• 𝜔 = frequency
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• Effectiveness increases with frequency, permeability and conductivity.



Passive Shielding – Permeability

• Permeability of ferromagnetic 
materials varies greatly with 
magnetic field strength.

• Data of permeability for weak 
magnetic fields O(𝜇T, nT) not 
easily found.

• Is there a minimum external 
field required for shielding?
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Passive Shielding – Material Choice

• High permeability :
– ferromagnetic materials, such as Ni-Fe alloys: mu-metals, permalloys.

• Highly conductive: 
– Silver, Copper, high temp. superconductor

– would be effective for high frequency magnetic fields.

• Must be effective in mitigating weak magnetic fields. 
– Currently unclear.

05/10/2017 Mitigation Concepts 14



Passive Shielding - Copper

• Coating the beam pipe with 2 mm of copper:

𝜔 =
2

𝜇𝜎𝛿2
• 𝜎 = 5.9 × 107 S/m  

• 𝜇 = 1.26 × 10−6 H/m 

• Frequencies greater than 𝜔 = 6.6 kHz will have field strength 
diminished by 1/e.

• To attenuate frequencies down to 1 Hz requires 16 cm of copper.
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Passive Shielding – Ferromagnetic Materials

• For frequencies less than O(kHz) 
large amounts of Copper required.

• Better to use a high permeability 
material.

• Mu-metals have:
• 𝜇𝑟~O(10 000).

• 𝜎~107 S/m
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𝛿 =
2

𝜔𝜇0𝜇𝑟𝜎

• For 𝜔 = 1 Hz, 𝛿 =1.3 mm.



Passive Shielding - Superconductors

• Have a σ = ∞, therefore could 
attenuate all frequencies.

• High temperature 
superconductors: 
Bi2Sr2Ca2Cu3O10, Tl2Ba2CaCu2O8, 
HgBa2CaCu2O6, etc. are 
superconducting above 100 K.

• Still far away from room 
temperature.

Mitigation Concepts05/10/2017 17



Passive Shielding – Comparison of Materials

Material Advantages Disadvantages

Conductive materials:
E.g. Copper/Silver

- Effective for high frequencies - Expensive.
- Not effective for low frequencies

Ferromagnetic materials: 
E.g. Mu-metals/Permalloys

- High permeability
- Good frequency range

- Not effective for weak fields?
- Availability

High temperature superconductors - Would attenuate all frequencies - Expensive
- Availability
- Temperature requirements
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• Comments: 
• There is always a residual field. 

• Mechanical imperfections can lead to inhomogeneous fields inside the shield.



Passive Shielding – Superconducting Cavities

• DC magnetic fields in the vicinity of superconducting cavities for the 
ILC lead to power losses – lowers Q.

• Magnetic shields to protect against the Earth’s magnetic field are 
being investigated at KEK by:

Tsuchiya K., Higashi Y., Hisamatsu H., Masuzawa M., Matsumoto H., 
Mitsuda C., Noguchi S., Ohuchi N., Okamura T., Saito K., Terashima A., 
Toge N., Hayano H. Proc. EPAC’  2006 (Edinburgh, Scotland, 2006) pp 

505–507.
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Passive Shielding – Superconducting Cavities

• They have measured relative 
permeability at room temp. 
as well as at cryogenic temp.

• Iron: 𝜇𝑟~1000

• Mu-metal: 𝜇𝑟~10 000

• Permalloy: 𝜇𝑟~100 000
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Passive Shielding – Superconducting Cavities

• They also measured the 
effectiveness of magnetic 
shields in DC fields.

• External magnetic field of 

0.5 G = 50 𝜇T (Earth).

• Cylinder of diameter 1.1 m 
and varying thickness.

• Iron: 𝐵𝑖𝑛𝑡~35 𝜇T

• Permalloy-PC: 𝐵𝑖𝑛𝑡~12 𝑛T
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Active Mitigation



Active Compensation

• The train-to-train feedback system for CLIC is optimised for ground 
motion.

• Will remove the effects of stray fields of less than 1 Hz.

• An alternative to a beam-based feedback is to correct the stray field 
itself.
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Active Compensation – Two Coil Scheme

• Measure magnetic field variations with one coil – the measurement 
coil.

• Correct the magnetic field variations with another coil – the corrector 
coil.

Measurement coil:
records voltage 𝜀 Corrector coil:

we induce voltage 𝜀𝑐𝑜𝑟𝑟
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Active Compensation – Two Coil Scheme

• If the measurement coil has a sampling frequency of 𝑓 =
1

∆𝑡
then the 

voltage measured at time 𝑡 = 𝑖Δ𝑡 is

𝜀𝑖 = −𝑁𝐴𝜇𝑒𝑓Δ𝐵𝑖

• 𝑁= number of turns

• 𝐴= cross-sectional area

• 𝜇𝑒= effective permeability

• Δ𝐵𝑖= stray field
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• The magnetic field generated by a solenoid is given by

Δ𝐵𝑐𝑜𝑟𝑟,𝑖 =
𝜇𝑒𝑁

𝐿
Δ𝐼𝑖

𝐵 =
𝜇𝑒𝑁𝐼

𝐿

• 𝑁= number of turns

• 𝜇𝑒= effective permeability

• 𝐼= current

• 𝐿= length
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Active Compensation – Two Coil Scheme
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Active Compensation – Two Coil Scheme

• The measurement coil sees both the stray field and the corrector:

𝜀𝑖 = −𝑁𝐴𝜇𝑒𝑓Δ𝐵𝑖 Δ𝐵𝑖 = Δ𝐵𝑠𝑡𝑟𝑎𝑦,𝑖 + Δ𝐵𝑐𝑜𝑟𝑟,𝑖

• If we impose                                                              we findΔ𝐵𝑐𝑜𝑟𝑟,𝑖+1 = −Δ𝐵𝑠𝑡𝑟𝑎𝑦,𝑖

Known from 𝜀𝑖 Known because we calculated this

Δ𝐵𝑐𝑜𝑟𝑟,𝑖+1 = Δ𝐵𝑐𝑜𝑟𝑟,𝑖 − Δ𝐵𝑖
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Active Compensation – Two Coil Scheme

• We can use                                                                      to derive the 
change in current we should put on the corrector coil:

𝜇𝑒𝑁Δ𝐼𝑖+1

𝐿
=

𝜇𝑒𝑁Δ𝐼𝑖

𝐿
+

𝜀𝑖

𝑁𝐴𝜇𝑒𝑓
⟹

Δ𝐵𝑐𝑜𝑟𝑟,𝑖+1 = Δ𝐵𝑐𝑜𝑟𝑟,𝑖 − Δ𝐵𝑖

Δ𝐼𝑖+1 = 𝑔𝜀𝑖 + Δ𝐼𝑖

where 𝑔 =
𝐿

𝜇𝑒
2𝑁2𝐴𝑓
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Active Compensation – Two Coil Scheme

• To work out voltage, model the corrector coil as a ℒℛ-circuit:

𝑉(𝑡) = ℛ𝐼(𝑡) + ℒ
𝑑𝐼(𝑡)

𝑑𝑡

⟹ 𝑉𝑐𝑜𝑟𝑟,𝑖+1 = ℛ𝐼𝑐𝑜𝑟𝑟,𝑖+1 + ℒ𝑓∆𝐼𝑐𝑜𝑟𝑟,𝑖+1

• This is solvable with initial condition 𝐼0 = 0.
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Active Compensation – Two Coil Scheme

• A simulation of this model was written with parameters:

Parameter Value

Number of turns 10

Stray field amplitude 5 nT

Stray field frequency 25 Hz

Radius of coils 10 cm

Length of coils 30 cm

Permeability of coil core 0.126 H/m
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Active Compensation – Two Coil Scheme

• Signal induced by a 
sinusoidal magnetic field 
with frequency 25 Hz.

• An error of ±10% was 
also added.
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Active Compensation – Two Coil Scheme

• The effect of varying the 
sampling frequency.

• This scheme is only 
effective with sampling 
frequencies much 
greater than in the stray 
field.
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Active Compensation – Two Coil Scheme

• Magnetic field variations 
with and without the 
correction running.

• A reduction of about 
90% occurs with these 
parameters.
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Active Compensation – Two Coil Scheme

• Doesn’t completely remove the 
stray field.

• Only works for stray fields of 
frequency much less than the 
sampling frequency.

• Possibility of introducing noise.

Pros: Cons:

• Would reduce stray fields that 
are above 1 Hz, less than a few 
kHz.
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Active Compensation – Sensor Requirements

• There are requirements on the sensors that can be used in such a 
corrector:
• Ideally small enough to fit into an accelerator.

• Radiation hard.

• Give a real-time reading.

• High sampling frequency and band.

• Low noise.

• (Cheap.)
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Status of Instrument



The Instrument – LEMI-144

• We have a sensor for surveying 
stray field sources.

• Induction coil magnetometer.

• Principle of operation:
• Changing magnetic field in the coil 

induces a voltage.

• One long coil with core made of a 
number of 𝜇-metal tapes insulated 
from one another.

• Has frequency band 0.0001–300 Hz.
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The Instrument – LEMI-144
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• Has an extremely high sensitivity and excellent signal-to-noise ratio.
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The Instrument – LEMI-144
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• Bimodal transfer function.

• Upper part kept approx. flat with 
feedback loop.

• Worse linearity compared with a 
simple coil.

Status of the Instrument



The Instrument – LEMI-144

• Pros:
• Low noise - sub nT precision.

• Has a low power consumption: can be used for long periods.

• Cons:
• Not radiation protected: cannot be used in the vicinity of a running 

accelerator.

• Geometry not practical to place in an accelerator.

• Only measures one component of the magnetic field variations.
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Main Technical Parameters

Frequency band of received signals 0.0001 – 300 Hz

Shape of transfer function Linear - flat

Transfer function corner frequency 1 Hz

Transformation factor at differential output
- At flat part
- At linear part

20 mV/nT
20*f mV/nT

Magnetic noise level
- At 0.01 Hz
- At 1 Hz
- At 100 Hz

≤ 65 pT/ Hz

≤ 0.6 pT/ Hz

≤ 0.01 pT/ Hz

Length of connecting cables ≤200 m

Power supply voltage ±(9…12) V

Current consumption (nominal) +14 mA
-10 mA

Temperature range of operation -20…50°C

Outer dimensions l=560 mm, d=60 mm

Design Rugged and waterproof

Weight 2.2 kg



DAQ – National Instruments USB-6366

• Sampling rate up to 2 MHz.

• 8 independent differential 
channels.

• 16 bit ADC resolution.

• Best linearity of its class.
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Power Supply

• Would like a completely mobile 
device.

• Currently using a Yuasa Y7-12 
battery (7 Ah) for LEMI-144.

• Using a windows laptop (DELL 
E7480) running LABVIEW to 
record voltage.

• Laptop battery life approx. 8 
hours.
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Initial Tests And Calibration

• The sensor outputs a voltage.

• Calibration must be done to 
translate this into a magnetic field 
variation.

• Initial setup of the sensor shows a 
voltage reading of 50 Hz from the 
mains power supply.
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Feedback Performance



Feedback Performance

• Luminosity loss due to a dynamic imperfection is given by
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∆ℒ = න 𝑇 𝑘,𝜔 2 𝑃 𝑘,𝜔 𝑑𝑘 𝑑𝜔

• 𝑃 𝑘, 𝜔 = Power spectrum density
• Characterises the stray fields.

• Obtained from measurements.

• 𝑇 𝑘,𝜔 = Transfer function 
• Characterises how a dynamic perturbation with 𝑘,𝜔 affects luminosity.

• Obtained from studying the response of the feedback system and its effect on 
the beam.



Feedback Performance: Ground Motion

model B10

No stab. 53%/68%

Current stab. 108%/13%

Future stab. 118%/3%

Luminosity achieved/lost [%]

Machine model
Beam-based feedback

Code

4705/10/2017



Power Density Spectrum: Ground Motion

05/10/2017 48

𝑃 𝑘,𝜔 =

Feedback Performance



Transfer Function: Ground Motion
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• Left shows the magnitude of 
quadrupole motion after active 
stabiliation.

• Also need the response of the 
beam to quadrupole motion.

• Gives 𝑇(𝑘, 𝜔).

• Effective for frequencies O(1 Hz).



Feedback Performance: Ground Motion
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Model B10

No stab. 53%/68%

Current stab. 108%/13%

Future stab. 118%/3%

Luminosity achieved/lost [%]

• Using 𝑇 𝑘, 𝜔 and 𝑃 𝑘, 𝜔 we 
can examine the feedback 
performance.

∆ℒ = න 𝑇 𝑘,𝜔 2 𝑃 𝑘,𝜔 𝑑𝑘 𝑑𝜔

Feedback Performance



Feedback Performance: Stray Fields
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Luminosity achieved/lost [%]

Machine model
Beam-based feedback

Code

51

Correction device

f

𝜀 Frequency response of
The correction device

?

Stray field, e.g.
natural source

t [hr]



Feedback Performance: Natural Source
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Luminosity achieved/lost [%]

Machine model
Beam-based feedback

Code

Geomagnetic
storm

• Sampling rate of data is 1 Hz.
• Could evaluate the performance with a feedback system acting at 

1 Hz.

(B. Heilig)

Feedback Performance

t [hr]



Feedback Performance: Natural Source

• Assuming a perfect beam-
based orbit correction, each 
pulse sees a change in field of 
about 1 nT.
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• No significant luminosity loss.

Feedback Performance



Work Programme



Stray Field Work Programme
• Understand (and model) sources

• Natural

• Environmental, e.g. trains, …

• Technical, e.g. accelerator components

• Understand (and model) transfer to beam

• Field at the beam is important

• E.g. beam pipe can modify field

• E.g. steel in walls of tunnel

• …

• Understand (and model) impact on the beam

• Here we have the tools

• Develop (and model) mitigation methods

• Make performance predictions

• Validate methods

• Choose most effective and cost effective method(s)
55

Here, we need to learn 
more

Based on models can predict 
collider performance

Experiments to develop and 
verify models including 
mitigation methods
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