Shielding magnetic fields of several Tesla: the FCC SuShi project

http://cern.ch/sushi-septum-project

Kristóf Brunner, Dániel Barna
Wigner Research Centre for Physics, Budapest, Hungary

Miro Atanasov, Alejandro Sanz-Ull
CERN
The Future Circular Collider

Baseline:

- 50+50 TeV proton-proton collider
- 100 km ring
- Using existing CERN infrastructure as injector

Targeted problem: extraction of the 50 TeV beam towards the beam dump
Extraction scheme

- Beam is dumped when:
 - Something misbehaves
 - At the end of the cycle

- Particle bunches

- Septum magnet: very sharp transition of B-field

- High field

- Dilution kickers

- Zero field

- Dump

- Kicker protection

- Abort gap
Doing it at the LHC: the Lambertson septa

Mu-metal layer on vacuum chamber

B < 1.2 T

Circulating & extracted beams

Coils

Iron yoke

Doing it at the LHC: the Lambertson septa

Mu-metal layer on vacuum chamber

Circulating & extracted beams

Using $\mu_r \gg 1$ to „suck out” the field lines from the circulating beam

Can't go above ~1.5 T due to saturation of iron

FCC parameters for extraction

At top energy (most difficult):

<table>
<thead>
<tr>
<th>Septum integrated field</th>
<th>190 T m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available space for septum</td>
<td>120 m</td>
</tr>
</tbody>
</table>

Need ≥ 2 T field (to accommodate gate valves, pumps, etc)

(Space would be even more tight in the „high-energy LHC” - LHC tunnel with FCC technology)

• B > 2 T (target: 3 Tesla)
 - Not easy with normal-conducting devices
 - need superconductors?

• Must follow the ring energy to be ready for beam-abort at any time (quasi-DC mode)

• Field homogeneity: ~1%

• Leakage field at circulating beam: < 10^{-4} relative
Doing it at the FCC: the SuShi idea

- If cooled down in 0 field, a superconductor can shield the outside field
- Persistent currents
 - Homogeneous high field
 - ~5-7 cm
- Concept is similar to eddy current septum, but can work in DC mode, (because the eddy currents are persistent)
Doing it at the FCC: the SuShi idea

- If cooled down in 0 field, a superconductor can shield the outside field.
- Persistent currents.

Concept is similar to eddy current septum, but can work in DC mode, (because the eddy currents are persistent).

Using $\mu_r \ll 1$ material to expel the field lines.
Pros & cons

Pros
- Shielding currents arranged by nature (high precision zero field)
- Continuous 2D current distribution (unlike a winded magnet) → perfect shielding
- Bulk shield, better mechanical, and thermal stability
- Highest possible current density (critical state model) → thinnest shield

Cons
- Superconductor in high rad zone (quench)
- Hysteretic behavior, always have to start from virgin state
- To erase ‘memory’ of shield, temperature has to be increased
Combining $\mu_r \gg 1$ and $\mu_r \ll 1$

The „magnetic cloak”

- Ferromagnet absorbs the induction lines expelled by the superconductor
- Seems a natural choice, since it does not distort the external field

Does not work for FCC with realistic geometrical parameters:

field in ferromagnet would be too high: ~13-18 T
Homogeneity at various field strengths

Flat wall → homogeneity despite significantly different penetration depths

At injection

pos. winding

neg. winding

≤0.5 T

At top energy

3 T
CERN Bubble chambers

- In the '70ies: superconducting tube to shield high magnetic field
- To introduce low-momentum particles into the high field of the bubble chamber
- Different materials, and techniques could bring the shielded field strength from 2 T up to 5.9 T

- M.Firth, et.al.: Performance of the superconducting field shielding tube for the CERN 2m hydrogen bubble chamber
F. Martin, S. J. St. Lorant, W. T. Toner: A four-meter long superconducting magnetic flux exclusion tube for particle physics experiments – NIM 103 (1972) 50
MgB$_2$

- Produced by the Reactive Liquid Magnesium Infiltration (RLI) process (G. Giunchi, Int.J.Mod.Phys.B17,453)

- Extra large boron grainsize (160 μm) to be stable against flux jumps (G.Giunchi et al, IEEE Trans. Appl. Supercond. 26, 8801005)
Testing of prototypes at SM18

- Shielding magnetic fields of several Tesla: the FCC Su Shi project,

This diagram shows a detailed view of the testing setup at SM18, including:

- Long aluminium support tube
- Hall sensors
- LHC corrector magnet MCBY
- Transverse alignments
- Delrin rod
- Transverse aligners

The diagram provides a clear visual representation of these components and their arrangements.
MgB$_2$ magnetization cycle

Field inside the shield

Field outside the shield
MgB$_2$ magnetization cycle

Ramp rate: 0.1 A/s \rightarrow 5 mT/s on external sensors (realistic for FCC: 3 T/10 minute)

2 minute plateaus for relaxation measurement
MgB$_2$ magnetization cycle

Smooth penetration at 2.6 T

Complete shielding below 2.6 T
MgB$_2$ magnetization cycle

- No flux jump on the virgin curve up to the highest field.
- Flux jumps at low fields, after the shield has been exposed to high fields.
- Smooth penetration at 2.6 T.
MgB$_2$ magnetization cycle

![MgB$_2$ magnetization cycle graph](image-url)
MgB$_2$: field penetration

- 2.6 T plateau (full shielding)
- Significant creep on the plateaus (smooth, not an avalanche-like jump!)

64 A magnet current

H0, H1, H2 x 6
MgB$_2$: field penetration

- 2.6 T plateau (full shielding)
- Field penetration at open end of the tube
- Significant creep on the plateaus (smooth, not an avalanche-like jump!)
- Full shielding (<0.1 mT) deeper inside
- 88 mm from shield's end
MgB$_2$: linearity

Measured external magnetic field is non-linear as a function of magnet current!
MgB$_2$: linearity

- Increasing field \rightarrow more penetration
- Effective shielding surface drifts away from Hall sensor
- Less field concentration at sensor

\[J_c(B) = J_0 \cdot \exp(-\gamma B) \]

COMSOL simulation in precise model of MCBY magnet
MgB$_2$: linearity

\[J_c(B) = J_0 \cdot \exp(-\gamma B) \]

J$_0$ and γ are strongly correlated

COMSOL simulation in precise model of MCBY magnet

Hall sensor
MgB$_2$: linearity

- **MgB$_2$:** linearity
- **J$_c$(B) = J$_0$ \cdot \exp(-\gamma B)**
- **Hall sensor**
- **COMSOL simulation in precise model of MCBY magnet**
- **J$_0$ and γ are strongly correlated**

Graphs:
- Graph showing B_{ext} at sensor's position vs. magnet current.
- Graph showing γ vs. J_0 with χ^2 values.

Equation:
$$J_c(B) = J_0 \cdot \exp(-\gamma B)$$

Text:
- MgB$_2$ is a superconductor with a critical current density J_c that is a function of the magnetic field B.
- J_0 and γ are strongly correlated, indicating a realistic model for MgB$_2$ superconductors.
MgB$_2$: linearity

\[J_c(B) = J_0 \cdot \exp(-\gamma B) \]

realistic MgB$_2$

COMSOL simulation in precise model of MCBY magnet

Hall sensor

\(J_0 \) and \(\gamma \) are strongly correlated
MgB$_2$: linearity

- From observed nonlinearity one can get some info on $J_c(B)$
- At 64 A different parameters give B penetration profiles with same, almost full depth
HTS tape covered tube

-
 - Ø46.5 mm
 - 25 layers of helically wrapped SuperOx 2G HTS tape, soft-soldered
 - Copper support tube
 - 450 mm

Layers overlapping
Little current loops
Superposition
HTS: Shielding performance

- Shielding up to 0.25 T (not perfect, as we will see!)
- Smooth, full penetration above 0.25 T
- Due to limited J_c?
- No flux jumps!

Graph showing the magnetic field behavior with different curves for $H_0:H_4$, $H_1:H_5$, and $H_2:H_6$. The graph plots B_{in} vs. B_{out} with B_{in} ranging from -1.5 to 1 and B_{out} ranging from -1 to 1.5.
HTS: penetration at low field!

Continuous penetration from zero field!
Attenuation is about 10^{-3} here
Due to geometry? (non-continuous geometry, small gaps between tape layers, small current loops)
NbTi/Nb/Cu multilayer shield

- Consists of multilayer sheets of ~0.8mm, containing 30 layers of 9 µm NbTi
- From previous tests it seems possible to shield 2.5T field with 3 sheets (~2.4mm)
- A 4-sheet shield will be tested in the beginning of next year

Shielding performance

Exponential

\[J_c(B) = J_0 \cdot \exp(-\gamma B) \]

leads to exponential increase of required thickness:

\[d = d_0 \cdot \exp(\gamma B) \]

with \(d_0 = 1/\gamma \mu_0 J_0 \)

For MgB\(_2\): roughly \(\times 3 \) increase for +1 T

Shielding performance

Exponential

\[J_c(B) = J_0 \cdot \exp(-\gamma B) \]

leaves to exponential increase of required thickness:

\[d = d_0 \cdot \exp(\gamma B) \]

with \(d_0 = \frac{1}{\gamma \mu_0 J_0} \)

For MgB\(_2\): roughly \(\times 3 \) increase for +1 T

\[j_{\text{eng}} \left[\times 10^9 \text{ A/m}^2 \right] \]

\(B \) [T]

Outlook

• Passive superconductors:
 – Perfect shielding if thickness is sufficient
 – Up to very high fields
 – DC and AC mode
 – Very attractive if space is tight
 – Very versatile:
 • MgB2: large bulk, complex shapes, EDM machining, cheap
 • NbTi multilayer: ductile, robust, formable

• Future plans:
 – Measurement of third prototype
 – Construct a full demonstrator
Thank you for your attention!

Acknowledgements

- FCC Study group
- CERN SM18 (M. Bajko, H. Bajas, M. Strychalski)
- CERN TE-MSC-MM (C. Petrone, M. Buzio)
- CERN TE-ABT (B. Goddard, J. Borburgh, M. Atanasov, A. Sanz-Ull)
- G. Giunchi (MgB$_2$)
- A. Molodyk (SuperOx)
- European Commission (FP7/EUCARD-2, grant agreement no. 312453)
- Hungarian Academy of Sciences
- Wigner Research Centre for Physics, Budapest
Additional slides
Measurement possibilities

- Rotating coil to measure field quality (during tests only)
- Shield thick enough to ensure **perfect shielding** safely...
- Most important: detect flux-jumps (very quickly and reliably) → beam abort
- Hall sensors close to the shield (off the mid-plane) (tests & real app. ?)
- Hall sensor to measure the „zero field“ (during tests only)
- Pick-up coil to detect flux-jump (tests & real app.)

- Do not need to be high precision
MgB$_2$: long-term relaxation

- If external field at a safe level below full penetration...
- ...relaxation is small, can be compensated by the excitation current

Graph showing the change in B_{ext} over time with annotations indicating that relaxation is small and can be compensated by the excitation current.