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Motivation

 Most commercial fabs have 
migrated to FinFETs below 
20-nm gate length feature 
sizes

 FinFETs exhibit improved 
electrostatic control of the 
channel and improved 
reliability compared to 
equivalent scaled planar 
CMOS

 Some work on the TID 
response of FinFETs has 
been presented at IRPS, 
NSREC, and RADECs

T. Hook, FDSOI Conference, Taiwan, 2013



Outline

 Technology overview

 A very basic review of radiation effects in CMOS devices

 Total ionizing dose (TID) in 14/16-nm FinFET devices

 Single-event upset (SEU) in 14/16-nm FinFETs: data and 
discussion of mechanisms

 Observation of single-event latchup (SEL) in a 14/16-nm 
FPGA?

 Conclusions
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Current  Technology Engagements

 GlobalFoundries

 14-nm FinFETs

 22-nm FDSOI

 NVM 

 Optane / 3D CrossPoint

 IBM

 32-nm PDSOI

 22-nm PDSOI

 TSMC

 16-nm FPGAs (Xilinx)



TECHNOLOGY PROGRESSION
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Path to FinFET Technology
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Bulk FinFET Processing Technology
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A. Yagishita (Toshiba), SOI Short Course (2009)

 Increasing processing 
complexity

 More challenging 
lithography

 Quad patterning

 Soon EUV

 Line edge roughness

 Isolation steps
 STI

 CSD/SSRW



Advantages / Challenges

9

M. G. Bardon (IMEC) ICICDT (2015)

Uppal (GF), IIRW (2016)

Gate length shrink

Performance scaling

FET is on edge
Dual gate

Recuces Ioff

110 not 100

Performance ⬆ 20 %

Power ⬇ 35%



Reliability Outlook

 FinFET TDDB shows improvement over planar

 pMOS FinFET NBTI did show some regression; 
improved in second gen. overall BTI improved

 HCD does degrade some for FinFETs

pMOS

NBTI

nMOS

TDDB
nMOS

HCD



RADIATION EFFECTS IN 
SEMICONDUCTORS

Brief review



Total Ionizing Dose Degradation Mechanisms

 Shifts in threshold voltage 
changes drive current in 
on-state

 Increased leakage current 
at STI sidewalls causes 
higher power dissipation

 Timing / switching 
mismatch for digital 
systems

 Traditionally preferential 
impact on nMOSFETs
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Chatterjee, IEEE TNS, 2013.



Single Event Latchup (SEL)

 A high current state 
sustained by a positive 
feedback loop in a n-p-
n-p junction resulting 
from charge injection in 
cross-coupled bipolar 
junction transistor

 Similar to electrical 
latchup except initiated 
by a charged particle 
interaction
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Why do we care?

• Well it requires a power-

down event to quench

• Can be destructive if not 

handled quickly

• Parts that exhibit such 

behavior are high risk



Single Event Upset (SEU)

 A possible circuit 
response to a charged 
particle interacting in 
specific regions of a 
memory (SRAM 
depicted) leading to an 
erroneous data state

 Problem because of 
data integrity and fault 
propagation up to the 
system level
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RESULTS

And now for some data…
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TID vs Technology Scaling
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 Scaling trends of off-state leakage vs technology node

 PDSOI exhibits very low leakage for 45- and 32-nm at 1 Mrad

 Migration to FinFETs resulted in a dramatic increase in post-
irradiation leakage (early look)

 FDSOI shows leakage comparable to older technologies

Hughes (NRL) REDW NSREC (2015)



Description of Test Structures

 Single logic and IO 
transistors in all Vth

flavors 

 Special Structures

 Ring oscillator (RO) (RF) 
transistors

 Static random access 
memory (SRAM) 
transistors
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Experimental Methods

 Information extracted from Ids-Vgs curves
 Vth – linear region approximation

 gm = dIds/dVgs

 Ids,on = Ids @ Vgs = 0.9 V, Vds = 50 mV

 Ids,off = Ids @ Vgs = 0 V, Vds = 50 mV

 Bias Conditions
 Off-state: Vd = 1.0 V, Vg  = Vs = Vb = 0 V

 On-state: Vg = 1.0 V, Vd  = Vs = Vb = 0 V

 Half-on-state: Vg = 0.5 V, Vd = Vs = Vb = 0 V

 Devices irradiated at 525 rad(SiO2)/s
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Low-Vth Device Bias Dependence
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 Large changes in Ids,off

 Gate-controlled leakage component

 On-state condition gives largest degradation

 Minimal change in Vth



TID Irradiation Bias Dependence

 DIds,off shows most 
degradation for on-
state condition

 DVth fairly similar for all 
bias conditions (and 
small)

 Lower operating voltage 
(half-on-state) shows 
marginal improvement 
in DIds,off and DVth

compared to full on-
state
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High-Vth Device Bias Dependence
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 Less off-state leakage compared to low-Vth device

 Reduced operating voltage has a greater impact on 
TID degradation for higher Vthdevice



Different Vth Devices – On-State
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 Increasing Vth shows less Ids,off degradation for 
equivalent dose

 Process level decisions will clearly impact TID impact 
on devices, circuits, and ICs



Comparison of TID Variability for 
Different Vth
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 High-Vth device shows less DIds,off compared to 
Low-Vthdevices

 On-state appears to be the worst case for device 
leakage response



A Tale of Two Commercial Processes

 Typically comes about 
when they fix a leakage 
problem

 Impossible to say if TID 
resilience remains a 
permanent feature of 
the technology going 
forward
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Two snapshots of a commercial 

14/16-nm FinFET technology 

show very different TID results
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Narrow width nFET

• Device shows more leakage in the on-state consistent with previous 

experimental results

• Response to TID is much less severe than original observations
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Change in irradiated leakage and Vth

 Drive current tracks Vth with 
irradiation

 Leakage current shift smaller 
than previous evaluations

 Results not consistent 
between foundries! – recent 
VU paper at NSREC 26
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Not all is well in the land of Oz

• Largest device shows much more leakage than either of previous 

two devices

• May be some dependence on total width/number of fingers
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Xilinx UltraScale+ (16-nm) FPGA - SEU
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• Parts exhibit a fairly low SEU cross section

• For some environments 3D geometry effectively lowers 

expected error rates even with higher bit density



Early Neutron SER Report

 Industry looks at SER from 
alphas, muons, and 
neutrons for terrestrial 
environment reliability

 Several reports of reduced 
SER from geometry change 
in FinFET vs planar

 No reports of destructive 
effects due to neutrons to 
109 n/cm2 from Broadcom 
or Intel



Mechanisms of SEU in FinFETs

 3D geometry allows 
increasing drive without 
increase in Drain-
Body/Well area

 Most charge is collected 
from subfin/well region 
this implies a higher 
Qcrit without impacting 
the sensitive volume 
dimensions
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Additional SEU Mechanisms

 SER/SEU response 
ultimately will depend on 
things beyond our control

 Channel stop doping

 Well doping

 Some control from layout 
and memory architecture

 Effective transistor 
width

 Spatial separation of 
critical nodes

 DICE vs regular latch
31



Xilinx UltraScale+ (16-nm) FPGA – “SEL”
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 Parts exhibit SEL-like behavior at relatively low LET

 Unclear if this is a circuit design issue or actual latchup

 There are reports of SEL in 14/16-nm that exhibit the 
correct temperature dependence but none have such low 
threshold LET



Conclusions

 On-state bias condition appears to be the worst case 
for Ids,off for all the transistor variations evaluated in 
this work

 More recent studies indicate TID may be less of an 
issue, however, some big questions still remain

 SEU shows some benefit for terrestrial environments 
even with higher memory density error rates can 
decrease

 Several design parameters can lead to lower TID 
impact and SEU rates

 We saw “SEL” and were not happy about it
33


